
2023 IEEE International Conference on Big Data (BigData)

979-8-3503-2445-7/23/$31.00 ©2023 IEEE 237

Sailfish: A Dependency-Aware and Resource
Efficient Scheduling for Low Latency in Clouds

Jinwei Liu∗, Yingjie Lao†, Ying Mao‡, Rajkumar Buyya§
∗Department of Computer and Information Sciences, Florida A&M University, Tallahassee, FL 32307, USA

†Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA
‡Department of Computer and Information Science, Fordham University, Bronx, NY 10458, USA

§School of Computing and Information Systems, The University of Melbourne, Parkville, VIC 3010, Australia
∗jinwei.liu@famu.edu, †ylao@clemson.edu, ‡ymao41@fordham.edu, §rbuyya@unimelb.edu.au

Abstract—Efficiently scheduling jobs in clouds is critical for
job performance, system throughput and resource utilization. The
growing importance of parallel applications in clouds introduces
challenges in scheduling data-parallel jobs. Production data-
parallel jobs increasingly have complex dependency structure,
i.e., complex task dependencies expressed as directed acyclic
graphs (DAGs), and heterogeneous resource demands. NP-hard
problems are introduced by relaxing either of these challenges
(i.e., scheduling of homogeneous tasks with dependency con-
straints or independent and heterogeneous tasks) for scheduler
design. It is challenging to design a scheduler for simultaneously
achieving low latency and high resource utilization due to the
complex dependency structure and job heterogeneity. In this
paper, we propose Sailfish, a dependency-aware and resource
efficient scheduling for low latency in clouds. Sailfish first uses
the machine learning algorithm to classify jobs into two categories
(high priority jobs and low priority jobs) based on the extracted
features. Next, Sailfish splits the jobs into tasks and distributes the
tasks to the master nodes based on the dependency of tasks and
the load of master nodes. Then, Sailfish utilizes the dependency
information of tasks to determine tasks’ priority, and packs
tasks by leveraging the complementary of tasks’ requirements on
different resource types and task dependency. Finally, the master
nodes leverage the proposed mutual reinforcement algorithm to
distribute tasks to workers in the system based on the resource
demands of tasks, the available resources of workers and task
dependency. Extensive experimental results based on a real
cluster and experiments using real-world Amazon EC2 cloud
service show that Sailfish can improve the average resource
utilization (by up to 40%) and reduce the latency (the average
job completion time) significantly (by up to 91%) compared to
the existing schedulers.

Index Terms—scheduling, task dependency, heterogeneity, re-
source utilization, latency

I. INTRODUCTION

Cloud frameworks tailored for managing and analyzing

big datasets are powering ever larger clusters of computers.

Batch processing frameworks for data parallel clusters (e.g.,

MapReduce [1], Dryad [2]) are increasingly used in business

environments as part of near real time production systems

at Facebook [3] and Microsoft. Data-parallel jobs in clouds

have complex dependency structure [4], [5]. Figure 1 shows

an example of production data-parallel jobs with complex task

dependencies in clouds, and this example shows how to utilize

task dependency for improving the system performance. In

T1

T2

T3

T4

T5

T7

T8

T9

T6

Pro 1

Pro 2

Pro 3

Worker

T7 T6 T8 T9T4T3T2T1T5

T5T1 T2 T3 T4 T8T7T6 T9

Execution order with dependency 
consideration in Sailfish

Execution order in other methods
1 sec1 sec1 sec

1 sec 1 sec 1 sec 1 sec

Time

Fig. 1: A motivating example: (1) complex dependencies among tasks
of production data-parallel jobs, and (2) leveraging task dependency for
improving system performance.

Figure 1, tasks T1, T2, T3, T4 and T5 are precedent tasks,

and their dependent tasks (e.g., tasks T6, T7, T8, T9) cannot

start running until they finish execution. Inappropriate execu-

tion order of tasks may drag down the system performance,

but judicious selection of execution order of tasks can help

improve the system performance (e.g., improving throughput

and reducing latency). Task T5 has more dependent tasks than

tasks T1, T2, T3 and T4. Executing T5 at first can enable

more dependent tasks to start running after the precedent task

T5 completes, which can help improve the throughput and

reduce latency. For simplicity, we assume the execution time

of each task is 1 second. The worker can process 3 tasks

simultaneously. In Figure 1, we see it requires 4 seconds to

process these 9 tasks based on the execution order in other

methods because the worker can only process 2 tasks (T4 and

T5) after finishing executing the tasks T1, T2 and T3 due to

the task dependency. However, it only requires 3 seconds to

process these tasks based on the execution order in Sailfish.

The dependency constraints of tasks challenge the design of

schedulers for simultaneously achieving low latency and high

resource utilization [4].

Heterogeneous hardware configurations and workloads are

increasingly common in modern computer clusters such as

Spark [6] and Hadoop [7]. The heterogeneity poses a signifi-

cant challenge for scheduling in cloud datacenters [8]–[10]. A

heterogeneous workload typically consists of many latency-

sensitive short jobs (e.g., operations of user-facing services)

and a small portion of long batch jobs (e.g., data analytics) that

dominate in terms of resource usage [8]–[12]. Duration of jobs

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 B

ig
 D

at
a 

(B
ig

D
at

a)
 | 

97
9-

8-
35

03
-2

44
5-

7/
23

/$
31

.0
0 

©
20

23
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
B

ig
D

at
a5

90
44

.2
02

3.
10

38
69

47

Authorized licensed use limited to: Florida A& M University. Downloaded on June 18,2024 at 23:04:23 UTC from IEEE Xplore.  Restrictions apply. 



238

in Google Cluster can vary from tens of seconds to essentially

the entire duration of the trace (i.e., 29 days), and most jobs

are short jobs [11], [13], [14]. The short jobs are latency

sensitive and typically they are assigned a higher priority in

scheduling. The long jobs tend to be latency-insensitive, and

are usually assigned a lower priority. However, the long jobs

consume the bulk of the resources, requiring a high-quality

scheduling (e.g., improvement of resource utilization and load

balance). The heterogeneity not only poses a challenge for

improving latency and throughput, but also challenges resource

utilization improvement. Therefore, the scheduler has to be

heterogeneity-aware, but it remains a critical challenge to de-

sign a scheduler for simultaneously achieving low latency and

high resource utilization [8]–[10]. Scheduling heterogeneous

DAGs introduces hard algorithmic problems whose optimal

solutions are intractable [15], [16].

To address the problem, we propose Sailfish: a dependency-

aware and resource efficient scheduling for low latency in

clouds. Our goal is to simultaneously improve resource

utilization and reduce latency. Sailfish outperforms previous

schedulers in that it can well handle the scheduling of hetero-

geneous jobs with dependency constraints, and simultaneously

achieve high resource utilization and low latency by leveraging

task dependency to determine task priority, the mutual rein-

forcement algorithm to predict tasks’ waiting time for reducing

latency and the task packing strategy to reduce resource frag-

mentation. We summarize the contribution of this work below.

• We propose Sailfish, a dependency-aware and resource

efficient scheduling, which can increase resource utiliza-

tion and throughput and reduce latency in clouds.

• Sailfish is heterogeneity-aware, and it uses a machine

learning based method for job classification based on

the extracted features. Sailfish splits jobs into tasks, and

assigns the tasks that do not depend on each other to

different workers (or different cores of a worker) so that

these tasks can be processed in parallel and the latency

can thus be reduced. Sailfish leverages task dependency

to determine task priority and adequately considers task

dependency in scheduling to further reduce latency.

• Sailfish adequately considers the complementary of tasks’

requirements on different resource types, and presents a

task packing strategy to reduce the resource fragmenta-

tion and improve the resource utilization.

• We extract task-level features and worker-level features,

and propose a mutual reinforcement algorithm to accu-

rately predict tasks’ waiting time so that it can further

reduce latency and increase throughput.

• We conduct workload analysis based on the real trace data

from a large production cluster, and the analysis results

demonstrate that the production cluster has low resource

utilization.

The remainder of this paper is organized as follows. Section

II shows the workload analysis based on the production

workloads. Section III describes the system model used in this

paper. Section IV presents the system design and architecture

0%
10%
20%
30%
40%
50%
60%
70%
80%

0 1 2 3 4 4 5 6 6 7 8

Co
nt

ai
ne

r 
us

ag
e

Time (days)

CPU Memory Disk I/O

Fig. 2: Resource utilization of containers within 8 days.

0%

20%

40%

60%

80%

100%

120%

0 1 3 3 4 5 6 7 8

M
ac

hi
ne

 u
sa

ge

Time (days)

CPU Memory Disk I/O

Fig. 3: Resource utilization of machines within 8 days.

of our job scheduling system Sailfish. Section V presents the

performance evaluation for Sailfish. Section VI reviews the

related work. Section VII concludes the paper with remarks

on our future work.

II. WORKLOAD ANALYSIS

To verify that the existing systems have low resource

utilization, we conducted workload analysis.

A. Low Resource Utilization
We collected the trace data from Alibaba Cluster. The

Alibaba Cluster Trace (cluster-trace-v2018) [4] is a datacenter

trace for virtual machines (VMs) with batch workloads and

DAG information. Cluster-trace-v2018 includes about 4,000

machines in a period of 8 days with CPU and MEM allocation.

To measure the resource utilization, we randomly sampled 400

machines and 800 containers.

Figure 2 shows the average resource utilization of containers

in Alibaba Cluster Trace. In Figure 2, we see that the resource

utilization follows CPU<Disk I/O<Memory, and the average

CPU utilization is around 2.12%. The containers in general

have low resource utilization. Figure 3 shows the average

resource utilization of machines in Alibaba Cluster Trace. In

Figure 3, we see that the resource utilization follows Disk

I/O<CPU<Memory, and the average Disk I/O utilization is

around 4.94%. The machines in general have low resource

utilization (CPU and Disk I/O).

III. SYSTEM MODEL

In this section, we first introduce the concepts and assump-

tions, then we formulate our problem based on the concepts

and assumptions. Finally, we present our proposed algorithm

for improving resource utilization.

A. Concepts and Assumptions

In a cloud system, a job is supposed to be split into m
tasks, and the tasks are allocated to workers based on the

their requirements on resources. We assume each worker has a

Authorized licensed use limited to: Florida A& M University. Downloaded on June 18,2024 at 23:04:23 UTC from IEEE Xplore.  Restrictions apply. 



239

TABLE I: Features for predicting jobs’ execution time.

Feature Description
Job-level features

Required CPU Amount of CPU resource required by the job
Required MEM Amount of MEM resource required by the job
Required storage Amount of storage resource required by the job
Required GPU Amount of GPU resource required by the job
# of tasks Number of tasks which the job contains

System-level features
CPU utilization VM’s CPU utilization
MEM utilization VM’s MEM utilization
Storage utilization VM’s storage utilization
GPU utilization VM’s GPU utilization

buffer queue which is used for queueing tasks when a worker

is allocated to more tasks than it can run concurrently. We

assume a dependent task can be executed immediately after

the predecessor task. The completion time of a task is the

time from the submission of the job that contains the task to

the time when the task finishes execution. A job completes

when all of its tasks finish. Throughput is the total number of

jobs that complete their execution per time unit.

Problem Statement: Given a certain amount of resources

(e.g., CPU, MEM and Storage, etc.) in terms of VMs,

resource demands of each job, the dependency constraints

of the tasks in each job, and resource capacity constraints of

VMs, how to allocate the VM resources to the heterogeneous

jobs to achieve high resource utilization and low latency?

Scheduling of tasks in cloud computing environment has

been proved to be an NP-hard problem and has a high

computational complexity [17], [18]. Therefore, we propose

a heuristic method called Sailfish. Sailfish first classifies the

jobs into long jobs and short jobs by estimating the run

time of jobs [11]. Next, Sailfish splits the jobs into tasks

and distributes the tasks to the master nodes based on task

dependency and the load of master nodes. Then, Sailfish

utilizes the dependency information of tasks to determine

task priority (Tasks with more dependent tasks have higher

priority), and packs packs complementary tasks. Finally, the

master nodes use the proposed mutual reinforcement algorithm

to distribute tasks to workers in the system based on the

resource demands of tasks, the available resources of workers

and task dependency.

B. Job Classification and Job Priority Determination

To classify jobs, Sailfish extracts both job-level features

and system-level features (The system-level features reflect

the environment in which the jobs will be running, and we

extracted the system-level features) [19]–[22], and it uses

Support Vector Machine (SVM) to classify jobs into long

jobs and short jobs. Specifically, Sailfish uses the extracted

features shown in Table I to predict the execution time of

a job. If the predicted execution time of the job is longer

than the threshold (Tth), then the job is a long job; otherwise,

the job is a short job. Sailfish sets two priority levels (high

priority and low priority) in the job level. In Sailfish, long

jobs are considered as low priority jobs, and short jobs are

considered as high priority jobs (Long jobs such as graph

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Precision Recall F1 Accuracy AUC

Pe
rfo

rm
an

ce
 

Various metrics
Fig. 4: Performance on different evaluation metrics of Sailfish.

CPU Mem Storage0

5

10

CPU Mem Storage

10

5

0

CPU Mem Storage

10

5

0

…

5

0

1

Task  <6, 5, 4>

…Task  <2, 4, 2>

Task  <1, 1, 2>

Fig. 5: An example of finding task Ti’s complementary task from the
given list of tasks to pack with Ti.

analytics can tolerate long latencies and tend to be latency-

insensitive. However, short jobs such as queries are latency

sensitive. Thus, we consider long jobs as low priority jobs

and short jobs as high priority jobs in this paper).

In the experiment, Sailfish uses the historical data from

google cluster trace [14] to estimate the run time of jobs.

Sailfish extracts the numerical values of the features from the

historical data for predicting the jobs’ execution time. Sailfish

considers jobs with execution time no more than 10 minutes

as short jobs [23] and jobs with execution time more than

10 minutes as long jobs. Sailfish trains the SVM classifier

using the sigmoid kernel function, and it repeatedly divides

the dataset into training and testing sets using 10-fold cross-

validation with percentage split and performs classification.

Figure 4 shows the result of the performance on different

evaluation metrics of Sailfish’s job classification. In Figure 4,

we see that most of the values of the evaluation metrics are

higher than 0.82. Therefore, the SVM algorithm can be used

to determine job priority by classifying jobs into long jobs

and short jobs based on the extracted features.

C. Task Priority Determination

Leveraging task dependency to determine task priority can

help reduce the latency. In order to avoid starvation of long

running tasks and reduce the waiting time of tasks, we follow

the method in the work [24] to consider the priority of task

Tij as a function of its remaining time tremij and its waiting

time twij based on the dependency relations among Tij and its

children (i.e., the tasks depending on Tij) and determine task

priority.

D. Improving Resource Utilization

Authorized licensed use limited to: Florida A& M University. Downloaded on June 18,2024 at 23:04:23 UTC from IEEE Xplore.  Restrictions apply. 



240

Scheduler

Scheduler

Scheduler

Scheduler

Job  

Job  b  

b  

Master

Master

Master

Worker Node

Worker Node

Worker Node

Worker Node

Worker Node

Worker Node

Worker Node

Worker Node

Worker Node

Failure worker node list

Running worker node list

���� Packing

���� Packing

���� Packing

High priority queue

Low priority queue

Fig. 6: Architecture of Sailfish.

Resource fragmentation leads to low resource utilization. To

reduce resource fragmentation and improve resource utiliza-

tion, Sailfish presents a task packing strategy which packs the

tasks with complementary dominant resources (A dominant
resource is defined as the resource type on which the task has

the highest demand) such that the summation of the deviation

of the two tasks’ resource demands on each resource type is

the largest (see Eq. (1)). To find Ti’s complementary task,

Sailfish uses Eq. (1) to calculate its deviation with every other

task Tj whose dominant resource is different from that of Ti.

DV (j, i) =

l∑

k=1

((djk − djk + dik
2

)2 + (dik − djk + dik
2

)2), (1)

where dik is Ti’s resource demand on resource type k. Finally,

the task with the highest deviation value is the complementary

task of Ti. This method can also be applied to task packing

for more tasks (e.g., three tasks). Figure 5 shows an example

of finding task Ti’s complementary task from the given list

of tasks to pack with Ti based on Eq. (1). In this example,

task Ti’s resource demands on CPU, memory and storage are

6, 5 and 4, respectively; task Tj’s resource demands on CPU,

memory and storage are 2, 4 and 2, respectively; task Ts’s

resource demands on CPU, memory and storage are 1, 1 and

2, respectively. After calculating its deviation with the other

tasks Tj and Ts, Sailfish chooses task Ts to pack with Ti

because DV (s, i) = 22.5 > DV (j, i) = 10.5. If the task Ti’s

complementary task cannot be found from the given list of

tasks, in this case, Sailfish assigns the task entity comprising

a single task Ti to a server.

E. Resource Allocation

After packing tasks using the task packing strategy in

Section III-D, Sailfish assigns each task entity (packed tasks or

a task) to a server that has the least remaining resources (called

most matched server) and can meet the resource demand of

the task entity, which can help further improve the resource

utilization.

IV. SYSTEM DESIGN AND ARCHITECTURE

This section presents the system design and architecture

of Sailfish. Figure 6 shows the architecture of Sailfish. The

system comprises multiple distributed schedulers, masters and

workers. After a user submits a job to the cloud system, the

system searches the scheduler that is not heavily loaded and

has the smallest geographic distance to the user, and delivers

the job to the scheduler. The scheduler first splits the job

into tasks, then it randomly selects r masters that are not

heavily loaded by taking into account task dependency and

distributes the tasks to the selected masters (see Algorithm 1).

After receiving the tasks, the masters pack complementary

tasks using the task packing strategy in Section III-D. Each

master maintains two task queues (high priority queue and

low priority queue): the high priority queue stores tasks of

short jobs and the low priority queue stores tasks of long

jobs. Next, masters use the mutual reinforcement algorithm in

Section IV-A and the resource allocation algorithm to assign

task entity to workers, and the workers calculate the priority

of tasks assigned to them and run tasks. In Sailfish, each

scheduler has a unique key, and each master records the

resource information of the workers associated with master.

Algorithm 1: Job Processing()

Input: A submitted job
1 A Job is submitted
2 sort(s[]) // Sort schedulers by distances between

schedulers and the user submitting the job
3 for i ← 1 to size(s) do
4 if s[i] is lightly loaded then
5 Assign the job to s[i] // Assign the job to the

scheduler
6 s[i] split the job into m tasks
7 s[i] distributes the tasks to r randomly selected masters

that are not heavily loaded by taking into account task
dependency

A. Task Scheduling

1) Fine-grained Waiting Time Prediction: Many previous

studies using sample-based techniques assign tasks to workers

based on the queue length at workers [25], [26]. However,

Authorized licensed use limited to: Florida A& M University. Downloaded on June 18,2024 at 23:04:23 UTC from IEEE Xplore.  Restrictions apply. 



241

Worker 1

Worker 2

150 ms150 ms

600 ms

300 ms

600 ms

Fig. 7: An example of coarse-grained estimate of waiting time based on queue
length.

�������� ����������������	�
	�

Fig. 8: Bipartite graph for tasks and workers.

queue length at workers is not sufficient for learning about

the waiting time because queue length provides only a coarse-

grained estimation of waiting time. Figure 7 shows an example

in which a scheduler tries to assign a task to one of two

workers. There are two 150 ms tasks waiting for execution

in the queue of Worker 1, and there is one 600 ms task in

the queue of Worker 2. The schedulers placing tasks based

on queue length will assign the task to Worker 2 though

it will result in a 300 ms longer waiting time. In addition,

many previous methods of placing tasks based on the queue

length rely on the global queue-length information. However,

tracking the global queue-length information is both time and

resource consuming [27]. To handle these issues, we propose

a fine-grained approach to predict tasks’ waiting time, and we

extract two types of features: task-level features and worker-

level features.

Mutual Reinforcement Algorithm: We propose a graph-

based Semi-supervised Learning (SSL) algorithm called Mu-

tual Reinforcement Label Propagation (MRLP) to accurately

predict tasks’ waiting time. Previous studies [28]–[31] show

that cluster workloads contain a large number of recurring jobs

(More than 60% of the jobs are recurring in the production

clusters at Microsoft [12]). We assume an initial estimate of

task waiting time based on previous executions [12].

Let T be the set of tasks that will be placed at the end

of queues of workers. Let W be the set of workers. The

identified features showed in Table II form the feature space

of tasks (X (T )) and workers (X (W)). Sailfish uses a graph-

based model to learn task waiting time. Sailfish models the

relation between tasks and workers by using a bipartite graph

Gij = {Nij , Eij} (see Figure 8), where Nij is the set of

TABLE II: Summary of features extracted from tasks and workers.

Feature Description
Task-level features

# of predecessor tasks # of predecessor tasks in the queue of a worker
# of dependent tasks # of dependent tasks in the queue of a worker
Job priority Priority of the job from which the task is
CPU demand Amount of CPU resource required by the task
MEM demand Amount of MEM resource required by the task
storage demand Amount of storage resource required by the task
GPU demand Amount of GPU resource required by the task

Worker-level features
# of running tasks # of running tasks at a worker
# of cores # of cores of a worker
Amount of MEM Amount of memory of the worker
Amount of storage Amount of storage of the worker
Amount of GPU Amount of GPU resource of the worker
CPU utilization Worker’s CPU utilization
MEM utilization Worker’s MEM utilization
Storage utilization Worker’s storage utilization
GPU utilization Worker’s GPU utilization

nodes and Eij is the set of undirected edges. There is an

edge between a task node and a worker node if the task

completed execution on the worker node. In the model, each

edge linking a task and a worker represents the waiting time

mapped to a worker with a queue length. Below we explain

how the model works. Suppose there are m tasks that are

assigned to n worker nodes. Let T be the vector (n × 1) of

tasks’ waiting time, and Q be the vector (m×1) of the queue

lengths of worker nodes. Define an m × n matrix E, where

eij = 1(i ∈ [1,m], j ∈ [1, n]) means task ti is added to the

queue qj , otherwise eij = 0. Then we can get E′ from E

E
′
ij = eij/

n∑

k=1

eik. (2)

For the task part of the bipartite graph, an edge connects any

two tasks (i.e., ti, tj) if they are in the same category (Both

belong to the same job type, e.g., short/long job). The weight

for the edge linking ti and tj is represented by wt(ti, tj),
which is calculated based on the cosine similarity between

the features of two tasks xt
i and xt

j :

wt(ti, tj) = exp(−‖xt
i − xt

j‖2/λ2
t ), (3)

where λt is a weighting parameter, wt(ti, tj) is set to be 0
if ti and tj belong to two different categories. In addition,

wt(ti, ti) = 0.

Define an n× n probabilistic transition matrix N :

Nij = P (ti → tj) = wt(ti, tj)/

n∑

k=1

wt(ti, tk), (4)

where Nij is the probability of transit from ti to tj . An edge

connects any two workers (i.e., wi, wj) that have completed

tasks in the same category for worker part of the graph.

The weight for the edge linking qi and qj is represented by

wq(qi, qj), which is calculated based on the cosine similarity

between the features of two workers (worker-level features)

xq
i and xq

j :

wq(qi, qj) = exp(−‖xq
i − xq

j‖2/λ2
q), (5)

Authorized licensed use limited to: Florida A& M University. Downloaded on June 18,2024 at 23:04:23 UTC from IEEE Xplore.  Restrictions apply. 



242

where λq is a weighting parameter, wq(qi, qj) is set to be 0
if the workers wi (with the queue qi) and wj (with the queue

qj) have not completed tasks belonging to the same category.

In addition, wq(qi, qi) = 0.

Then, we define an m×m probabilistic transition matrix

Mij = P (qi → qj) = wq(qi, qj)/

m∑

k=1

wq(qi, qk). (6)

Given some known (labeled) examples of T and Q. The

following equation can be used to estimate the workers’ queue

lengths from their neighbors and their tasks’ waiting times.

Qc+1 = αMQc + (1− α)E′Tc. (7)

Correspondingly, the equation below can be used to estimate

tasks’ waiting time from their neighbors and workers’ queue

lengths.
Tc+1 = βNTc + (1− β)ETQc+1. (8)

Repeating a certain number of times, all tasks’ waiting times

can be estimated. The steps for iteratively finding waiting

time and queue length are shown in Algorithm 2 as follows:

Algorithm 2: Pseudocode for iteratively finding waiting

time and queue length

Input: waiting time feature vector T0, queue length feature vector
Q0, weighting coefficients α, β, some manual labels of T0

and/or Q0

Output: Waiting time T and queue length Q.
1 Set c=0
2 while not convergence do
3 Propagate waiting time. Tc+1 ← βNTc + (1− β)ETQc+1

// Formula (8)
4 Propagate queue length. Qc+1 ← αMQc + (1− α)E′Tc

// Formula (7)
5 Clamp the labeled data of Tc+1 and Qc+1

6 Set c = c+ 1

7 return Q, T

Algorithm 2 shows the pseudocode for iteratively finding

tasks’ waiting time and queue length. The algorithm first

propagates tasks’ waiting time by estimating tasks’ waiting

time from their neighbors and the queue length of workers

(line 3). Second, the algorithm propagates queue length of

workers by estimating queue length from their neighbors and

tasks’ waiting time (line 4). Then, it clamps the labeled data of

tasks’ waiting time and queue length of workers (line 5). After

repeating a certain number of times, the algorithm can estimate

all tasks’ waiting time and the queue length of workers.

2) Task Scheduling: Algorithm 3 shows the pseudocode

of task scheduling. In Algorithm 3, Sailfish first packs tasks

that have complementary resource requirements based on the

task packing strategy. Then, the masters assign task entity to

workers based on Algorithm 2.

V. PERFORMANCE EVALUATION

In this section, we present our trace-driven experimental

results. We first conducted experiments on a large-scale real

Algorithm 3: Task Scheduling()

Input: A set of tasks
1 Pack tasks that have complementary resource requirements based on

the task packing strategy
2 Masters assign task entity to workers based on the available

resources of workers and the mutual reinforcement
algorithm // Algorithm 2

TABLE III: Parameter settings.

Parameter Meaning Setting
n # of servers 30-50
h # of jobs 100-2,500
m # of tasks of a job 10-2,000
Ls
th Threshold for heavily loaded scheduler 0.85

Lm
th Threshold for heavily loaded master 0.85

α A certain coefficient ∈ (0, 1) 0.5
β A certain coefficient ∈ (0, 1) 0.5
γ A certain coefficient ∈ (0, 1) 0.5 [24]
ω1 Weight for task’s remaining time 0.5
ω2 Weight for task’s waiting time 0.3
ω3 Weight for task’s allowable waiting time 0.2

cluster [32]. Then, we conducted experiments on the real-

world Amazon EC2 [33] to further evaluate the performance

of our method.

To show the performance of Sailfish, we compared the

results of our method and the other three methods Pigeon [8],

Eagle [10] and Sparrow [25]. We first deployed our testbed in

a large-scale cluster. We implemented our method and other

three methods in our testbed.

Pigeon [8]. Pigeon is a distributed hierarchical job scheduler

for datacenters, which aims to ensure low latency. Pigeon

divides workers in a cluster into groups, and the master in

each group centrally manages all the tasks handled by the

group.

Eagle [10]. Eagle is a hybrid data center scheduler for data-

parallel programs, and a centralized scheduler handles long

jobs and distributed schedulers handle short jobs.

Sparrow [25]. Sparrow is a stateless decentralized sched-

uler that provides near optimal performance using two key

techniques: batch sampling and late binding.

We first deployed our testbed on 50 servers in a large-

scale real cluster. Users’ job arrival rates follow a Poisson

distribution [34]. The servers in the real cluster are from Sun

X2200 servers (AMD Opteron 2356 CPU, 16GB memory). We

then conducted experiments on 30 instances in the real-world

Amazon EC2 and the instances in EC2 are from commercial

product HP ProLiant ML110 G5 servers (2660 MIPS CPU,

4GB memory). We considered each instance as a server. In

both real cluster and EC2 experiments, we set the bandwidth

capacity and the disk storage capacity of each server (instance)

to 1GB/s bandwidth and 720GB, respectively.

In each experiment, we varied the number of heterogeneous

jobs from 100 to 600 with step size of 100. The Google

cluster trace data [14] was used to set the parameters. The

Google cluster trace [14] records resource usage on a cluster

of about 11,000 machines from May 2011 for 29 days. We

randomly chose tasks from the jobs in the period between May

Authorized licensed use limited to: Florida A& M University. Downloaded on June 18,2024 at 23:04:23 UTC from IEEE Xplore.  Restrictions apply. 



243

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

100 200 300 400 500 600

CP
U 

ut
ili

za
tio

n

Number of jobs

���
���� Pigeon
Eagle Sparrow

(a) CPU

0%

10%

20%

30%

40%

50%

100 200 300 400 500 600

M
EM

 u
til

iza
tio

n

Number of jobs

���
���� Pigeon
Eagle Sparrow

(b) Memory

0%

5%

10%

15%

20%

25%

30%

100 200 300 400 500 600

St
or

ag
e 

ut
ili

za
tio

n

Number of jobs

���
���� Pigeon
Eagle Sparrow

(c) Storage

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

CPU MEM Storage

Av
e.

 re
so

ur
ce

 u
til

iza
tio

n

Resource types 

 Sailfish SailfishW/oP
Pigeon Eagle
Sparrow

(d) Average

Fig. 9: Utilizations of different resource types vs. number of jobs of different methods on a real cluster.

0

2

4

6

8

10

12

14

16

70 80 90

No
rm

al
ize

d 
to

 S
ai

lfi
sh

Load (%)

SailfishW/oRL Pigeon
Eagle Sparrow

Fig. 10: Job completion times normal-
ized to Sailfish on a real cluster.

0

2

4

6

8

10

12

14

16

70 80 90

N
or

m
al

ize
d 

to
 S

pa
rr

ow

Load (%)

Sailfish SailfishW/oRL
Pigeon Eagle

Fig. 11: Throughput normalized to
Sparrow on a real cluster.

1 to May 7. We set the CPU and memory consumption, and

execution time for each task based on the Google cluster trace,

and we set the disk and bandwidth consumption for each task

to 0.02MB [35] and 0.02MB/s [36], [37], respectively. In the

experiment, we created the dependency relationship between

tasks based on tasks’ starting time and ending time from the

trace. When there is no overlap between the execution times

of two tasks of a job, we can create a dependency relationship

between the two tasks. We constrained the number of levels

in a created dependency DAG within five and the number of

dependent tasks on a task within fifteen [15]. Table III shows

the parameter settings in our experiment unless otherwise

specified.

A. Experimental Results on A Real Cluster

Figures 9(a), 9(b) and 9(c) show the relationship be-

tween the resource (CPU, Memory and Storage) uti-

lization and the number of jobs on a real cluster. In

these figures, we see that the resource utilization follows

Sailfish>Pigeon>Eagle>Sparrow. The resource utilization in

Sailfish is higher than that in Pigeon because Sailfish leverages

complementarity of tasks’ demands on different resource types

and uses a task packing strategy to reduce the resource frag-

mentation and improve the resource utilization. Also, Sailfish

leverages task dependency to determine task priority and

adequately considers task dependency in scheduling, which

can enable more (dependent) tasks to run in parallel and thus

improve the resource utilization. The resource utilization in

Pigeon is higher than that in Eagle and Sparrow because all the

workers in a group are shared among tasks from short jobs in a

work-conserving manner, while all the low priority workers are

shared by tasks from long jobs. The resource utilization in Ea-

gle is higher than that in Sparrow because Eagle utilizes Suc-

cinct State Sharing (SSS) to improve resource utilization by

dynamically allowing short jobs to run in the general partition.

We also measured the average resource utilization of

different resource types in different methods. To test the

effectiveness of task packing in increasing resource utilization,

we also evaluated the performance of SailfishW/oP, a variant of

Sailfish in which job packing is not used. Figure 9(d) shows the

average resource utilization of different resource types in dif-

ferent methods. We observe that the average resource utiliza-

tion follows Sailfish>SailfishW/oP>Pigeon>Eagle>Sparrow

due to the same reasons.

We evaluated the overhead of different methods by mea-

suring the job completion time of each method on the real

cluster. To test the effectiveness of the mutual reinforcement

algorithm (MRLP) in reducing job completion time, we also

evaluated the performance of SailfishW/oRL, a variant of Sail-

fish in which the mutual reinforcement algorithm is not used.

0

0.5

1

1.5

2

2.5

3

10% 20% 30% 40%

Th
ro

ug
hp

ut
 (#

 o
f t

as
ks

/m
s)

Error rate

Load-70% Load-80% Load-90%

Fig. 12: Throughput vs. error rate on
a real cluster.

We followed the work [8], [10]

to measure the job comple-

tion time of SailfishW/oRL,

Pigeon, Eagle and Sparrow

normalized to Sailfish under

different cluster loads. Fig-

ure 10 shows different meth-

ods’ job completion time nor-

malized to Sailfish under dif-

ferent cluster loads. In Fig-

ure 10, we see that the job completion time follows

Sailfish<SailfishW/oRL<Pigeon<Eagle<Sparrow. This is be-

cause Sailfish splits jobs into tasks by taking into account the

constraints (e.g., the dependency among tasks) of tasks, and

assigns the tasks that do not depend on each other to different

machines so that these tasks can be processed in parallel and

the latency (job completion time) can thus be reduced. Also,

Sailfish leverages task dependency to determine task priority

and adequately considers task dependency in scheduling to

further reduce latency. Moreover, Sailfish uses the mutual

reinforcement algorithm to accurately predict task duration,

which can further reduce the latency. As Sparrow does not

distinguish between short jobs and long jobs, it incurs up to

13.9, 8.6, 5.2 and 2.9 times longer job completion time than

Sailfish, Pigeon and Eagle, respectively.

We also measured the throughput of different methods

on the real cluster. To test the effectiveness of the mutual

reinforcement algorithm in increasing throughput, we

also evaluated the performance of SailfishW/oRL. We

measured the throughput of Sailfish, SailfishW/oRL, Pigeon

and Eagle normalized to Sparrow under different cluster

loads. Figure 11 shows different methods’ throughput

normalized to Sparrow under different cluster loads.

Authorized licensed use limited to: Florida A& M University. Downloaded on June 18,2024 at 23:04:23 UTC from IEEE Xplore.  Restrictions apply. 



244

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

100 200 300 400 500 600

CP
U 

ut
ili

za
tio

n

Number of jobs

���
���� Pigeon
Eagle Sparrow

(a) CPU

0%

10%

20%

30%

40%

50%

100 200 300 400 500 600

M
EM

ut
ili

za
tio

n

Number of jobs

Sailfish Pigeon
Eagle Sparrow

(b) Memory

0%

5%

10%

15%

20%

25%

30%

100 200 300 400 500 600

St
or

ag
e 

ut
ili

za
tio

n

Number of jobs

���
���� Pigeon
Eagle Sparrow

(c) Storage

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

CPU MEM Storage

Av
e.

 re
so

ur
ce

 u
til

iza
tio

n

Resource types 

Sailfish SailfishW/oP
Pigeon Eagle
Sparrow

(d) Average

Fig. 13: Utilizations of different resource types vs. number of jobs of different methods on Amazon EC2.

0

2

4

6

8

10

12

14

16

70 80 90

No
rm

al
ize

d 
to

 S
ai

lfi
sh

Load (%)

SailfishW/oRL Pigeon
Eagle Sparrow

Fig. 14: Job completion times normal-
ized to Sailfish on Amazon EC2.

0

2

4

6

8

10

12

14

16

70 80 90

N
or

m
al

ize
d 

to
 S

pa
rr

ow

Load (%)

Sailfish SailfishW/oRL
Pigeon Eagle

Fig. 15: Throughput normalized to
Sparrow on Amazon EC2.

In Figure 11, we see that the throughput follows

Sailfish>SailfishW/oRL>Pigeon>Eagle>Sparrow. This

is because Sailfish splits jobs into tasks by taking into

account the constraints (e.g., the dependency among tasks) of

tasks, and assigns the tasks that do not depend on each other

to different machines so that these tasks can be processed

in parallel and the throughput can thus be increased. Also,

Sailfish leverages task dependency to determine task priority

and adequately considers task dependency in scheduling to

further increase throughput. Moreover, Sailfish uses the mutual

reinforcement algorithm to accurately predict task duration,

which can further increase the throughput. As Sparrow does

not distinguish between short jobs and long jobs, it incurs up

to 14.0, 9.7, 4.8 and 2.8 times lower throughput than Sailfish,

SailfishW/oRL, Pigeon and Eagle, respectively.

To test the effectiveness of the mutual reinforcement algo-

rithm, we also examined the relationship between throughput

and the prediction accuracy of the reinforcement learning

algorithm on the real cluster. Figure 12 shows the relationship

between Sailfish’s throughput and the error rate of the mutual

reinforcement algorithm under different cluster loads. In Fig-

ure 12, we see that the throughput decreases as the error rate

increases. This is because the prediction accuracy decreases

as the error rate increases, and lower prediction accuracy can

increase the waiting time of tasks in the queue of workers.

B. Experimental Results on Amazon EC2

To fully test the performance of our method, we also

conducted experiments on the real-world Amazon EC2.

Figures 13(a), 13(b) and 13(c) show the relationship between

the resource (CPU, Memory and Storage) utilization and the

number of jobs on Amazon EC2. We observe that the resource

utilization follows Sailfish>Pigeon>Eagle>Sparrow. The

resource utilization in Sailfish is higher than that in Pigeon

because Sailfish leverages complementarity of tasks’ demands

on different resource types and uses a task packing strategy to

reduce the resource fragmentation and improve the resource

utilization. The resource utilizations in Pigeon is higher than

that in Eagle and Sparrow because all the workers in a group

are shared among tasks from short jobs in a work-conserving

manner, while all the low priority workers are shared by tasks

from long jobs. To further test the effectiveness of the rein-

forcement learning algorithm in reducing job completion time

and verify the performance of resource utilization of different

methods, we also evaluated the performance of SailfishW/oP

and measured the average resource utilization of different

resource types in different methods. Figure 13(d) shows the

average resource utilization of different resource types in dif-

ferent methods. We observe that the average resource utiliza-

tion follows Sailfish>SailfishW/oP>Pigeon>Eagle>Sparrow

due to the same reasons.

We also measured the job completion time of Sail-

fishW/oRL, Pigeon, Eagle and Sparrow normalized to Sail-

fish under different cluster loads on Amazon EC2. Fig-

ure 14 shows different methods’ job completion time nor-

malized to Sailfish under different cluster loads. In Fig-

ure 14, we see that the job completion time follows

Sailfish<SailfishW/oRL<Pigeon<Eagle<Sparrow. As Spar-

row does not distinguish between short jobs and long jobs, it

incurs up to 13.6, 8.5, 5.4 and 2.8 longer job completion time

than Sailfish and Pigeon, respectively. The result in Figure 14

is consistent with that in Figure 10, and the reasons are the

same as that explained in Figure 10.

0

0.5

1

1.5

2

2.5

3

10% 20% 30% 40%

Th
ro

ug
hp

ut
 (#

 o
f t

as
ks

/m
s)

Error rate

Load-70% Load-80% Load-90%

Fig. 16: Throughput vs. error rate on
Amazon EC2.

We also measured the

throughput of Sailfish,

SailfishW/oRL, Pigeon and

Eagle normalized to Sparrow

under different cluster loads

on Amazon EC2. Figure 15

shows different methods’

throughput normalized to

Sparrow under different

cluster loads. In Figure 15, we see that the throughput follows

Sailfish>SailfishW/oRL>Pigeon>Eagle>Sparrow due to the

same reasons explained in Figure 11. As Sparrow does not

distinguish between short jobs and long jobs, it incurs up to

13.7, 9.6, 4.7 and 2.6 times lower throughput than Sailfish,

SailfishW/oRL, Pigeon and Eagle, respectively.

We also examined the relationship between throughput and

the prediction accuracy of the mutual reinforcement algorithm

on Amazon EC2. Figure 16 shows the relationship between

Sailfish’s throughput and the error rate of the reinforcement

Authorized licensed use limited to: Florida A& M University. Downloaded on June 18,2024 at 23:04:23 UTC from IEEE Xplore.  Restrictions apply. 



245

learning algorithm under different cluster loads. In Figure 16,

we observe similar result due to the same reasons explained

in Figure 12.

VI. RELATED WORK

The related work is split into two categories: job/task

scheduling for low latency (or short job completion time) and

job/task scheduling for high resource utilization. First, we

review prior work falling into these two categories. Then, we

indicate the advantages of Sailfish compared to the previous

methods.

A. Scheduling for Reducing Latency or Job Completion Time
Many methods have been proposed to handle job/task

scheduling for low latency (or short job completion time or

high throughput). Ousterhout et al. [25] proposed Sparrow, a

distributed, low latency scheduling that provides near optimal

performance using two key techniques: batch sampling and

late binding. To compensate for the occasional poor schedul-

ing decisions made by the distributed job scheduling such

as Sparrow, Delgado et al. [11] proposed Hawk, a hybrid

scheduler, staking a middle ground between centralized and

distributed schedulers for improving the runtime of jobs.

To overcome the limitation (only partially avoiding head-

of-line blocking) of hybrid schedulers such as Hawk [11]

and Mercury [38], Delgado et al. [10] proposed Eagle, a

hybrid data center scheduler for data-parallel programs. Eagle

dynamically divides the nodes of the data center in partitions

for the execution of long and short jobs to avoid head-of-line

blocking, and introduces sticky batch probing to achieve better

job-awareness. Mohan et al. [39] proposed Synergy, a resource

sensitive scheduler for shared GPU clusters. Synergy infers

the sensitivity of DNNs to different resources using optimistic

profiling, and performs such multi-resource workload-aware

assignments across a set of jobs scheduled on shared multi-

tenant clusters using a new near-optimal online algorithm.

However, they neglect the dependency between tasks and

thus cannot utilize the dependency information to reduce the

latency to the minimum by running tasks that are independent

of each other in parallel. To reduce job completion time,

Wang et al. [8] proposed Pigeon, a distributed, hierarchical

job scheduler that employs a divide-and-conquer approach in

task scheduling. In Pigeon, workers are divided into groups.

Each group has a master worker which centrally manages all

the tasks handled by the group. Jajoo et al. [40] proposed

SLEARN, a task-sampling-based approach, to learn job prop-

erties in the spatial dimension for Cluster Job Scheduling.

SLEARN exploits the similarity among runtime properties of

the tasks of the same job. SLEARN first proactively samples

and schedules a small fraction of the tasks of each job, then it

uses the observed runtime properties of those tasks to estimate

those of the whole job. However, Pigeon and SLEARN neglect

the complementary resource requirements of tasks, and they

cannot fully increase the resource utilization. Also, they do

not leverage task dependency information to determine task

priority for reducing the latency.

B. Scheduling for Improving Resource Utilization
There are many studies on job/task scheduling for high

resource utilization. But the resource constraints are ignored in

many research studies. To improve resource utilization, some

studies [30], [41] pack tasks/jobs to machines based on their

requirements of all resource types for reducing resource frag-

mentation. Grandl et al. [41] proposed Tetris, a multi-resource

cluster scheduler that packs tasks to machines based on their

requirements along multiple resources. Specifically, Tetris first

selects the set of tasks whose peak usage of each resource

type can be accommodated on a machine when the resources

of the machine become available. For each task in the set,

Tetris computes an alignment score (a weighted dot product

between the vector of machine’s available resources and the

task’s peak usage of resources) to the machine, and the task

with the highest alignment score is scheduled and allocated its

peak resource demands. Grandl et al. [30] proposed an online

altruistic multi resource DAG scheduler CARBYNE which

packs tasks for improving resource utilization. However, these

methods do not consider job heterogeneity (job heterogeneity

in both execution time and resource demands for task packing.

Zhao et al. [42] proposed Muri, a multi-resource cluster

scheduler for DL workloads. Muri exploits multi-resource

interleaving of DL training jobs to achieve high resource

utilization and reduce job completion time). To maximize

interleaving efficiency, Muri uses a scheduling algorithm based

on Blossom algorithm for multi-resource multi-job packing.
Unlike the existing approaches, Sailfish judiciously utilizes

task dependency information to determine task priority by

prioritizing tasks that will subsequently enable the execution

of more dependent tasks, which helps reduce the latency. Also,

Sailfish extracts task- and worker-level features, and presents

a mutual reinforcement algorithm to accurately predict task

waiting time for further reducing the latency and increasing

throughput. In addition, Sailfish considers the complementary

of tasks’ requirements on different resource types, and packs

complementary tasks, and then allocates resources to the

packed tasks, which helps reduce the resource fragmentation

and improve the resource utilization.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we present a dependency-aware and

resource efficient scheduling with low latency in clouds.

Sailfish judiciously leverages task dependency information

to determine task priority by prioritizing tasks that will

subsequently enable the execution of more dependent tasks,

which helps reduce the latency and increase throughput. Also,

Sailfish assigns the tasks that are independent of each other to

different workers/cores so that these tasks can be processed in

parallel and the latency can thus be reduced. Moreover, Sailfish

extracts task- and worker-level features, and presents a mutual

reinforcement algorithm to accurately predict task waiting time

for further reducing the latency and increasing throughput.

In addition, Sailfish takes into account the complementary

of tasks’ requirements on different resource types, and packs

complementary tasks, and then allocates resources to the

Authorized licensed use limited to: Florida A& M University. Downloaded on June 18,2024 at 23:04:23 UTC from IEEE Xplore.  Restrictions apply. 



246

packed tasks based on their resource demands, which helps

improve the resource utilization. We compare Sailfish with the

existing methods under different scenarios using a real cluster

and Amazon EC2 cloud service, and demonstrate that Sailfish

outperforms the exiting methods (including a hierarchical

scheduler, a hybrid data center scheduler and a decentralized

scheduler) under both the real cluster and Amazon EC2 cloud

service. In the future, we will use different cloud/cluster

workloads to fully verify the performance of our method.

Also, we will consider data locality, fairness, cross-job

dependency, and the scenario that new tasks are dynamically

added which extends the task-dependency graph for further

optimizing the performance of Sailfish. In addition, we will

consider fault tolerance and energy efficiency in designing a

low-latency and resource-efficient scheduling system so that

the system can handle node failures/crashes or straggler.

ACKNOWLEDGMENT

This research was supported in part by the Faculty Research

Awards Program at Florida A&M University.

REFERENCES

[1] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca.
Jockey: Guaranteed job latency in data parallel clusters. In Proc. of
EuroSys, 2012.

[2] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed
data-parallel programs from sequential building blocks. In Proc. of
Eurosys, pages 59–72, March 2007.

[3] D. Borthakur, J. Gray, J. S. Sarma, K. Muthukkaruppan, N. Spiegelberg,
H. Kuang, K. Ranganathan, D. Molkov, A.Menon, S. Rash, R. Schmidt,
and A. Aiyer. Apache hadoop goes realtime at facebook. In Proc. of
SIGMOD, 2011.

[4] H. Tian, Y. Zheng, and W. Wang. Characterizing and synthesizing task
dependencies of data-parallel jobs in alibaba cloud. In Proc. of SoCC,
Santa Cruz, 2019.

[5] A. Chung, S. Krishnan, K. Karanasos, C. Curino, and G. R. Ganger.
Unearthing inter-job dependencies for better cluster scheduling. In Proc.
of OSDI, 2020.

[6] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and Ion Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing. In Proc. of
NSDI, 2012.

[7] Hadoop. http://hadoop.apache.org/ [accessed in August 2023].
[8] Z. Wang, H. Li, Z. Li, X. Sun, J. Rao, H. Che, and H. Jiang. Pigeon:

an effective distributed, hierarchical datacenter job scheduler. In Proc.
of SoCC, 2019.

[9] P. Delgado, D. Didona, F. Dinu, and W. Zwaenepoel. Kairos: Preemptive
data center scheduling without runtime estimates. In Proc. of SoCC,
2018.

[10] P. Delgado, D. Didona, F. Dinu, and W. Zwaenepoel. Job-aware
scheduling in eagle: Divide and stick to your probes. In Proc. of SoCC,
Santa Clara, 2016.

[11] P. Delgado, F. Dinu, A. Kermarrec, and W. Zwaenepoel. Hawk: Hybrid
datacenter scheduling. In Proc. of ATC, 2015.

[12] J. Rasley, K. Karanasosy, S. Kandulay, R. Fonseca, M. Vojnovic, and
S. Rao. Efficient queue management for cluster scheduling. In Porc. of
EuroSys, London, 2016.

[13] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch.
Heterogeneity and dynamicity of clouds at scale: Google trace analysis.
In Proc. of SoCC, San Jose, October 2012.

[14] Google trace. https://code.google.com/p/googleclusterdata/ [accessed in
August 2023].

[15] R. Grandl, S. Kandula, S. Rao, A. Akella, and J. Kulkarni. Graphene:
Packing and dependency-aware scheduling for data-parallel clusters. In
Proc. of OSDI, Savannah, 2016.

[16] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Al-
izadeh. Learning scheduling algorithms for data processing clusters. In
Proc. of SIGCOMM, 2019.

[17] Q. Zhang, L. Cheng, and R. Boutaba. Cloud computing: state-of-the-art
and research challenges. Journal of internet services and applications,
1(1):7–18, 2010.

[18] A. Gorbenko and V. Popov. Task-resource scheduling problem. Inter-
national Journal of Automation and Computing, 9(4):429–441, 2012.

[19] P. Xiong, Y. Chi, S. Zhu, J. Tatemura, C. Pu, and H. Hacigümüs.
Activesla: A profit-oriented admission control framework for database-
as-a-service providers. In Proc. of SoCC, Cascais, October 2011.

[20] N. J. Yadwadkar, G. Ananthanarayanan, and R. Katz. Wrangler:
Predictable and faster jobs using fewer resources. In Proc. of SoCC,
Seattle, 2014.

[21] L. Shao, Y. Zhu, S. Liu, A. Eswaran, K. Lieber, J. Mahajan, M. Thigpen,
S. Darbha, S. Krishnan, S. Srinivasan, C. Curino, and K. Karanasos.
Griffon: Reasoning about job anomalies with unlabeled data in cloud-
based platforms. In Proc. of SoCC, Santa Cruz, 2019.

[22] A. Ganapathi, Y. Chen, A. Fox, R. H. Katz, and D. A. Patterson.
Statistics-driven workload modeling for the cloud. In Proc. of SMDB,
pages 87–92, 2010.

[23] Y. Chen, S. Alspaugh, and R. Katz. Interactive analytical processing in
big data systems: a cross-industry study of mapreduce workloads. In
Proc. of VLDB Endowment, volume 5(12), pages 1802–1813, 2012.

[24] J. Liu, H. Shen, A. Sarker, and W. Chung. Leveraging dependency in
scheduling and preemption for high throughput in data-parallel clusters.
In Proc. of IEEE CLUSTER, Belfast, United Kingdom, 2018.

[25] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. Sparrow:
Distributed, low latency scheduling. In Proc. of SOSP, Farmington,
2013.

[26] K. Jagannathan, M. Markakis, E. Modiano, and J. N. Tsitsiklis. Queue-
length asymptotics for generalized max-weight scheduling in the pres-
ence of heavy-tailed traffic. IEEE/ACM Trans. Netw., 20(4):1096–1111,
2012.

[27] C. Wang, C. Feng, and J. Cheng. Distributed join-the-idle-queue for
low latency cloud services. IEEE/ACM Trans. Netw., 26(5):2309–2319,
2018.

[28] S. Agarwal, S. Kandula, N. Bruno, M. Wu, I. Stoica, and J. Zhou.
Reoptimizing data-parallel computing. In Proc. of NSDI, San Jose, CA,
2012.

[29] A. Fergusin, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca. Jockey:
Guaranteed job latency in data parallel clusters. In Proc. of EuroSys,
Bern, 2012.

[30] R. Grandl, M. Chowdhury, A. Akella, and G. Ananthanarayanan. Al-
truistic scheduling in multi-resource clusters. In Proc. of OSDI, 2016.

[31] V. Jalaparti, P. Bodik, I. Menache, S. Rao, K. Makarychev, and M. Cae-
sar. Network-aware scheduling for data-parallel jobs: Plan when you
can. In Proc. of SIGCOMM, 2016.

[32] Palmetto cluster. https://www.palmetto.clemson.edu/palmetto/about/ [ac-
cessed in August 2023].

[33] Amazon ec2. https://aws.amazon.com/ec2/ [accessed in August 2023].
[34] L. Zheng, C. Joe-Wong, C. G. Brinton, C. W. Tan, S. Ha, and M. Chiang.

On the viability of a cloud virtual service provider. In Proc. of
SIGMETRICS, Antibes Juan-Les-Pins, 2016.

[35] H. Kim, N. Agrawal, and C. Ungureanu. Revisiting storage for
smartphones. In Proc. of FAST, 2012.

[36] A. L. Shimpi. The SSD anthology: Understanding SSDs and new drives
from OCZ, 2014.

[37] J. Liu, H. Shen, and L. Chen. CORP: Cooperative opportunistic resource
provisioning for short-lived jobs in cloud systems. In Proc. of IEEE
CLUSTER, 2016.

[38] K. Karanasos, S. Rao, C. Douglas, K. Chaliparambil, G. Fumarola,
S. Heddaya, R. Ramakrishnan, and S. Sakalanaga. Mercury: Hybrid
centralized and distributed scheduling in large shared clusters. In Proc.
of ATC, 2015.

[39] J. Mohan, A. Phanishayee, J. Kulkarni, and V. Chidambaram. Looking
beyond gpus for dnn scheduling on multi-tenant clusters. In Proc. of
OSDI, 2022.

[40] A. Jajoo, Y. C. Hu, X. Lin, and N. Deng. A case for task sampling
based learning for cluster job scheduling. In Proc. of NSDI, Renton,
2022.

[41] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella.
Multi-resource packing for cluster schedulers. In Proc. of SIGCOMM,
Chicago, 2014.

[42] Y. Zhao, Y. Liu, Y. Peng, Y. Zhu, X. Liu, and X. Jin. Multi-
resource interleaving for deep learning training. In Proc. of SIGCOMM,
Amsterdam, 2022.

Authorized licensed use limited to: Florida A& M University. Downloaded on June 18,2024 at 23:04:23 UTC from IEEE Xplore.  Restrictions apply. 


