
CORP: Cooperative Opportunistic Resource
Provisioning for Short-Lived Jobs in Cloud Systems

Jinwei Liu*, Haiying Shen† and Liuhua Chen*
*Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA

†Department of Computer Science, University of Virginia, Charlottesville, VA 22904, USA

{jinweil, liuhuac}@clemson.edu, hs6ms@virginia.edu

Abstract—In cloud systems, achieving high resource utilization
and low Service Level Objective (SLO) violation rate are im-
portant to the cloud provider for high profit. For this purpose,
recently, some methods have been proposed to predict allocated
but unused resources and reallocate them to long-running service
jobs. However, the accuracy of their prediction method relies on
the existence of patterns in jobs’ resource utilization. Therefore,
these methods cannot be used for short-lived jobs, which usually
do not have certain patterns but exhibit frequent fluctuations
in resource requirements. Also, these methods may result in
resource fragmentation and lead to low resource utilization
because they neglect job resource intensity in multi-resource
allocation and may allocate much more resources to jobs. To
handle this problem, we propose a Cooperative Opportunistic
Resource Provisioning scheme (CORP) for short-lived jobs.
CORP uses the deep learning method to predict the amount
of temporarily-unused resource of each short-lived job. It also
predicts the fluctuations of the amount of unused resource using
Hidden Markov Model, and adjusts the predicted amount for the
peak and valley of unused resource, and dynamically allocates
the corrected amount of resource to jobs. Further, CORP
uses a job packing strategy by leveraging complementary jobs’
requirements on different resource types and allocates such jobs
to the same VM to fully utilize unused resources, which increases
resource utilization. Extensive experimental results based on a
real cluster and Amazon EC2 show that CORP achieves high
resource utilization and low SLO violation rate compared to
previous resource provisioning schemes.

I. INTRODUCTION

Cloud computing, as a paradigm for the on-demand pro-

vision of virtualized resources, attracts many interests. Cloud

providers typically offer resources for leasing with elastic in-

frastructure as a service (IaaS) paradigm. In order to maximize

the profit, the cloud provider aims to achieving high resource

utilization and low Service Level Objective (SLO) violation

rate, which, however, are mutually contradictory to each other.

Higher resource utilization (i.e., lower allocated resources

to jobs) leads to lower SLO violation rate and vice versa.

Although the elastic and on-demand nature of cloud computing

enables cloud users to meet their dynamic and fluctuating

demands (i.e., low SLO violation rate) with minimal man-

agement overhead, users usually are allocated more resources

than their jobs’ demand, resulting in resource wastage [1], [2].

Currently, the resource allocation in a cloud is either

reservation-based or demand-based to achieve low SLO viola-

tion rate. In reservation-based resource allocation, the cloud

reserves resources for each user [3]. In demand-based re-

source allocation, the cloud imposes a small resource ceiling

for each user, allows users to scale on demand, and copes

Job 1 <3, 4, 5> Job 2 <3, 3, 5>

CPU Mem Storage
0

5

10

(a) Without avoiding fragmentation

Job 1 <9, 1, 6> Job 2 <1, 9, 4>

CPU Mem Storage
0

5

10

(b) Avoiding fragmentation

Fig. 1: Allocate resource to jobs by leveraging complementary jobs’ require-
ments on different resource types to increase resource utilization.

with workload variations [4]. Reserved resources ensure long-

term availability (e.g., over a year), and on-demand resources

ensure short-term availability (e.g., hours) [5]. A user usually

does not fully utilize the reserved resources or the imposed

ceiling. Even if its peak resource demand reaches the reserved

resources or the imposed ceiling, its average resource require-

ment is much lower than the peak usually [6]. To further

increase the resource utilization, another approach [4], [7],

[8] reallocates temporarily-unused resources to new jobs in

an opportunistic manner with no or weaker SLO guarantee.

These resources do not guarantee availability.

The method in [4] uses time series forecasting to predict

the amount of resources that will remain unused during

multi-month periods. However, such a prediction method

assumes that resource utilization pattern exists in training data

of resource utilization of the jobs. Though this assumption

may be true for long-lived jobs, it usually does not hold true

for short-lived jobs, in spite of the fact that short-lived jobs

occupy most of the jobs in the cloud [9]. Short-lived jobs,

such as short-lived queries in the applications of Internet-of-

Things and online data processing, typically run for seconds

or minutes with a maximum timeout of 5 minutes [10]–[13].

Short-lived jobs usually cannot tolerate long delays and must

be processed quickly. To efficiently process the short-lived

jobs, continuous provisioning of sufficient resources (e.g.,

computing resource) is required. Therefore, it is important to

ensure efficient processing on short-live jobs with sufficient

resource provision, while achieving high resource utilization

and low SLO violation rate. This task is challenging because

short-lived jobs usually do not exhibit certain resource

utilization patterns [6] and exhibit fluctuations in resource

use [14]. Since existing approaches cannot directly handle

this challenge, we mainly deal with this challenge in this

paper. Also, the methods in [4], [7] do not consider leveraging

complementarity of jobs’ requirements on different resource

Authorized licensed use limited to: Florida A& M University. Downloaded on August 03,2025 at 06:41:40 UTC from IEEE Xplore. Restrictions apply.

types (CPU-high and MEM-low, CPU-low and MEM-high)

for allocating multiple resource types to jobs. Therefore, they

may allocate much more resources to different intensive jobs

(e.g., CPU intensive and MEM intensive) that have different

resource demands on different resource types [15], which

can easily result in resource fragmentation and hence low

resource utilization (see Figure 1).

In this paper, we aim to design a resource provisioning

scheme for short-lived jobs in cloud with high resource

utilization while achieving low SLO violation rate. The key

challenges include: (1) how to accurately predict the amount of

temporarily-unused resources of short-lived jobs with resource

fluctuations? (2) how to more fully utilize the temporarily-

unused resources by considering diverse resource intensities

of jobs? and (3) how to allocate the resource to short-live jobs

to satisfy their time constraints. We propose a Cooperative Op-

portunistic Resource Provisioning method (CORP) for short-

lived jobs. This method can cooperate with other methods for

long-lived jobs for resource allocation in cloud systems. Since

the deep learning algorithm does not require the existence of

patterns in training data for accurate prediction [16] as its

multiple hidden layers are capable of modeling complex data

with great efficiency and it has an advantage over shallow

machine learning methods [17]–[19], we use it to predict the

amount of temporarily-unused resource. To handle the fluctua-

tions of the amount of unused resource to further increase the

prediction accuracy, we use Hidden Markov Model (HMM)

to adjust the prediction error. In resource allocation, CORP

tries to consolidates complementary jobs whose demands on

multiple resources are complementary to each other in order

to more fully utilize the unused resources (see Figure 1).

We summarize the contributions of this work below:

• CORP uses the deep learning method to predict the amount

of temporarily-unused resource of each short-lived job, and

offers an opportunistic approach to reallocate predicted unused

resources in order to increase the resource utilization.

• CORP also considers the fluctuations of the amount of the

unused resource caused by the peak and valley of jobs’

resource demands. It first predicts the fluctuations of the

amount of the unused resource using HMM, then adjusts the

predicted amount for the peak and valley of unused resource,

and dynamically allocates the corrected amount of resource to

jobs. CORP thus can adapt well to the requirement of time-

varying user demand on resources.

• CORP uses a job packing strategy by leveraging complemen-

tary jobs’ requirements on different resource types (e.g., CPU,

MEM) and allocates such jobs to the same VM to fully utilize

unused resource, which reduces the resource fragmentation

and further increases the resource utilization.

The remainder of this paper is organized as follows. Section

II describes the cooperative opportunistic resource provision-

ing problem. Section III presents the details of the system

design. Section IV presents the performance evaluation for

our method. Section V reviews the related work. Section VI

concludes this paper with remarks on our future work.

II. COOPERATIVE OPPORTUNISTIC RESOURCE

PROVISIONING PROBLEM

The physical machines (PMs) are deployed in a cloud

system, and their resources are allocated to virtual machines

(VMs). The VM capacity comprises of multiple types of

resource (e.g., CPU, MEM and storage) and their resources are

allocated to jobs based on job workloads. In this paper, we con-

sider the problem of allocating allocated but unused resources

in VMs to jobs for achieving high resource utilization and

low SLO violation rate. To increase the resource utilization,

the allocated but unused resource can be reallocated to jobs

with a certain probability. Also, for jobs with different resource

intensities (e.g., a job with high demand on CPU and a job

with a high demand on MEM), they can be allocated with

the unused resources in a VM together to reduce resource

fragmentation in order to further increase resource utilization.
TABLE I: Notations.

J A set of jobs ru
i j,t Unused type j resc. allocated to Ji at t

Ji The ith job in J Uj,t System’s utilization of type j resc. at t
l # of resc. types w j,t Type j resc. wastage ratio at t

Ua,t Utilization of all resc. at t wa,t Overall resc. wastage ratio at t
Np Total # of PMs ri j,t Amount of type j resc. allocated to Ji at t
Nv Total # of VMs di j,t Ji’s demand on type j resc. at t
η Confidence level Ŷi Predicted Ji’s unused resc. using DNN
Ci j CAP of vi’s type j resc. σ̂ Estimated SD for prediction errors
nt # of jobs submitted at t Pth Prob. threshold for prediction error

Suppose there are Nv VMs, and l types of resources (e.g.,

CPU, memory, storage) in the system. We use vi to denote

the i-th VM and use Ci j to denote the capacity for the type j
resource of VM vi. Assume the time is split into slots, denoted

by T = {t1, t2, ...}. Let nt be the number of jobs submitted

at time slot t. Denote ri j,t (i ∈ {1, ...,nt}, j ∈ {1, ..., l}) as the

amount of the type j resource allocated to job Ji at time slot t,
ru

i j,t in ri j,t , as the amount of unused type j resource allocated

to job Ji at time slot t, di j,t as job Ji’s demand on type j
resource at time slot t. Therefore, ri j,t = ru

i j,t +di j,t . For easy

reference, Table I lists the main notations used in this paper.

Hence, in the system, the resource utilization of type j
resource at time slot t is

Uj,t =
∑nt

i=1 di j,t

∑nt
i=1 ri j,t

(1)

where nt is total number of jobs submitted to the system at

time slot t. The overall resource utilization for all resources

at time slot t is

Ua,t =
∑l

j=1(ω j ∑nt
i=1 di j,t)

∑l
j=1(ω j ∑nt

i=1 ri j,t)
(2)

where l is the total number of resource types, ω j is the weight

for type j resource, and ∑l
j ω j = 1. The reason for setting

different weights for different resource types is that sometimes

some resources are more important than other resources. For

example, CPU and MEM are more important than storage

because storage is not the bottleneck resource [4]. The type

j resource wastage ratio at time slot t is

w j,t =
∑nt

i=1(ri j,t −di j,t)

∑nt
i=1 ri j,t

(3)

The overall resource wastage ratio for all resources at time

slot t is

wa,t =
∑l

j=1(ω j ∑nt
i=1(ri j,t −di j,t))

∑l
j=1(ω j ∑nt

i=1 ri j,t)
(4)

Authorized licensed use limited to: Florida A& M University. Downloaded on August 03,2025 at 06:41:40 UTC from IEEE Xplore. Restrictions apply.

CORP tries to pack jobs to allocated VMs as much as

possible by minimizing the overall resource wastage ratio wa,t
in Equ. (4), and if CORP cannot pack all jobs to allocated

VMs, then CORP allocates the unallocated VMs to jobs.

Our objective is to minimize wa,t , which will be shown in

our formulated problem below.

A. Objective
Our problem of the VM resource allocation to jobs can be

stated as follows.

Problem Statement: Given a certain amount of resources

(e.g., CPU, MEM, etc.), resource demands of each job, re-

source capacity constraints of VMs, how to allocate the VM

resources to jobs to achieve high resource utilization while

avoiding SLO violations as much as possible?
The resource allocation problem in our work is an NP-

hard problem and has high computational complexity [20],

[21]. Therefore, we propose a heuristic method called CORP,

which approximately achieves the same goal mentioned above.

Specifically, CORP first accurately predicts the amount of

temporally-unused allocated resource based on the historical

data with the consideration of the non-existence of pattern

and fluctuations of the amount of the unused resource. It then

leverages complementarity of jobs’ requirements on different

resource types, and utilizes the packing strategy to allocate the

unused resource to other jobs with a certain probability.

III. THE DESIGN OF CORP

In the following, Section III-A presents the prediction of

the amount of temporally-unused resource and Section III-B

presents the unused resource allocation algorithm.

A. Prediction Process and Resource Preemption
In this paper, we use the deep learning together with HMM

to accurately predict the temporally-unused resource with the

consideration of the fluctuations of the amount of the unused

resource, and then dynamically allocate the unused resource

to users’ jobs. We use L to denote the size of the window

(the prediction horizon). After each time period L, we use

the deep learning technique to make the predictions for the

amount of the temporally-unused resource in a time window

ΔW = (t, t + L], where t is the time when the prediction

is made. After conducting the analysis of the Google trace

from our system, we chose to make the predictions for a 1

minute window because short-lived jobs typically run minutes.

We then use HMM to predict whether the amount of the

temporally-unused resource will be in the peak or valley at

t+L, based on which we adjust the predicted unused resource

(e.g., CPU) by deep learning as the final predicted amount.

As shown in Figure 2, deep neural network (DNN) uti-

lizes multiple hidden layer structure for hierarchical feature

learning. The multiple hidden layers enable the composition

of features from lower layers, giving the potential of modeling

complex data with fewer units. Compared with other machine

learning methods, deep learning has the following inherent

advantages. First, deep learning only needs the raw data for

training without requiring sufficient high quality and truly

representative past data [22], [23]. Also, deep learning has

 Input

 Output

 Low-level layer

 Mid-level layer

 High-level layer

Hidden
Layer

 d-1

d

 d+1

Fig. 2: Deep neural network.

better accuracy in many applications [24], [25], so it can more

accurately predict the real resource demands with the same

given past data. More importantly, deep learning does not

require that the historical data must have patterns, which is

required by the methods like fast Fourier transform [4], [26].

The prediction process of the amount of unused resource

consists of three parts: 1) predicting the amount of unused re-

source using deep learning with HMM; 2) Prediction with con-

fidence intervals; 3) Probabilistic-based resource preemption.

1) Predicting Unused Resource:
a) Predicting Unused Resource Using Deep Learning:

We use CPU as an example to illustrate the prediction of

the amount of unused resource using deep learning. Each

input data contains CPU utilization of a job at each slot in

last � slots. To build the DNN, for each input, there are

three steps: feed-forward evaluation, back-propagation, weight

update. Below, we introduce the details of each step.

Feed-forward evaluation: The output of each neuron i in layer

d (called activation, denoted by gi(d)) is computed as a func-

tion of its c inputs from neurons in the lower layer d−1. Let

wi j(d − 1,d) be the weight associated with a connection be-

tween neuron j in layer d−1 and neuron i in layer d, we have

gi(d) = F((Σc
j=1wi j(d −1,d) ·g j(d −1))+ ei) (5)

where ei is a bias term for the neuron. Equ. (5) is a sigmoid

function, which is a nonlinear function associated with all

neurons in the network, and is more accurate [27].

Back-propagation: For each neuron i in the output layer, the

error terms E are computed using the following equation:

Ei(dh) = (ti(dh)−gi(dh)) ·F ′(gi(dh)) (6)

where t(x) is the true value of the output and F ′(x) represents

the derivative of F(x). Next, these error terms are back-

propagated for each neuron i in layer d connected to m neurons

in layer d +1 summed as follows:

Ei(d) = (
m

∑
j=1

E j(d +1) ·w ji(d,d +1)) ·F ′(gi(d)) (7)

Weight updates: The error terms are used to update the weights

by using the following equation:
Δwi j(d −1,d) = μ ·Ei(d) ·g j(d −1), ∀ j = 1, ...,c (8)

where μ represents the learning rate parameter, and c is the

number of inputs from neurons in layer d −1.

The process of these three steps is repeated for each input

until the entire training dataset has been processed, which

constitutes a training epoch. At the end of a training epoch, the

model prediction error is computed as a held-out validation set.

Basically, the training continues for multiple training epochs,

processing the training data set each time, until the validation

set error converges to a low value. Finally, the DNN is built.

Authorized licensed use limited to: Florida A& M University. Downloaded on August 03,2025 at 06:41:40 UTC from IEEE Xplore. Restrictions apply.

The deep learning algorithm for predicting the amount

of unused resource is comprised of two parts: training and

testing. For training, it first computes the hidden activation.

Next, it computes the reconstructed output from the hidden

activation. Then the algorithm computes the error gradient, and

it back-propagates error gradient to update weight. For testing,

the algorithm autoencodes the input and generates the output.

After the training, the DNN is built. To predict the unused

resource of a job at time t +L, we input CPU utilization of a

job at each slot in last � slots to the DNN, and the output is the

amount of unused CPU resource of the job. The deep learning

algorithm predicts the amount of unused resources of each

job Ji in a time period, denoted by Ŷi = (r̂i1, ..., r̂il), where r̂i j
denotes the predicted amount of unused type j resource of job

Ji. The resource usage of short-lived jobs sometimes fluctuates;

it reaches a peak and a valley sometimes [26], which makes the

actual amount of unused resource under fluctuations cannot be

accurately predicted. To handle this problem, CORP then uses

the HMM model to predict the peak and valley occurrences of

the unused resource for prediction error correction. We present

the details of the HMM model below.

b) Predicting Fluctuations of Unused Resource Using
HMM: We use CPU as an example to illustrate the pro-

cess, and the method can be directly applied to other re-

source types. Given a set of historical data, let maxcpu, mcpu
and mincpu be the maximum amount, average amount and

minimum amount of unused CPU resource in the histori-

cal data, respectively. We split the interval [mincpu,maxcpu]
into 3 subintervals: [mincpu,mincpu + 1

2 (mcpu − mincpu)],
(mincpu+

1
2 (mcpu−mincpu),mcpu+

1
2 (maxcpu−mcpu)), [mcpu+

1
2 (maxcpu −mcpu),maxcpu]. We call these three parts as peak,

center, valley, respectively, which are used to categorize the

observation symbols of the HMM model. The correspond-

ing (hidden) states that determine the observation symbols

are over-provisioning (OP), normal-provisioning (NP), under-

provisioning (UP), respectively (see Figure 3) [28].

Denote S = {S1, ...,SH} (H = 3) as the set of states, qt
as the state at t, and Q = q1q2...qT as a state sequence. Let

V = {1, ...,M} (M = 3) be the set of possible observation

symbols per state, and O= {O1, ...,OT} (Oi ∈V, ∀i = 1, ...,T)
be the observation sequence, where M is the number of

observation symbols1 (1,2,3 represent “peak”, “center”

and “valley” regions, respectively) and T is the length of

observation sequence. To determine the observation symbols,

we consider the time interval between two consecutive

observation time slots j and j + 1 (j = 1, ...,T − 1) as a

window, and we divide the window into L−1 subwindows. Let

Δ j be the difference between the maximum amount of unused

resource and the minimum amount of unused resource in the

window. If Δ j falls in [mincpu,mincpu+
1
2 (mcpu−mincpu)], then

we consider the observation symbol at j+ 1 is valley; if Δ j
falls in (mincpu+

1
2 (mcpu−mincpu),mcpu+

1
2 (maxcpu−mcpu)),

then we consider the observation symbol at j + 1 is center;

1The number of states H does not necessary equal the possible observation
symbols per state M, and the HMM model in our work is a special case.

��

�� ��

Fig. 3: Hidden Markov Model.

otherwise, we consider the observation symbol at j + 1 is

peak. Then, the state transition probability matrix is

A = {ai j} (ai j = P{qt+1 = S j|qt = Si}, 1 ≤ i, j ≤ H) (9)

where the state transition coefficients satisfy: ai j ≥ 0 and

∑H
j=1 ai j = 1. The observation probability matrix B is

B = {b j(k)} (b j(k) = P{Ot = k|qt = S j},1 ≤ j ≤ H,1 ≤ k ≤ M) (10)

where b j(k) is the probability that the observation symbol is k
given the sate at t is S j. Thus, the initial state distribution is

π = {πi} (πi = P{q1 = Si}, 1 ≤ i ≤ H) (11)

Given the model λ = (A,B,π) and an observation sequence

O, our goal is to find the most likely state sequence. Specifical-

ly, we aim to maximize the expected number of correct states

for the HMM. We define γt(i) as the probability of being in

state Si at time t, given the observation sequence O and the

model λ : γt(i) = P{qt = Si|O,λ} (12)

Equ. (12) can be simplified with the forward-backward vari-

ables as follows:
γt(i) = αt(i)βt(i)/P(O|λ) (13)

where αt(i) is the forward variable defined as
αt(i) = P(O1O2 · · ·Ot ,qt = Si|λ) (14)

where βt(i) is the backward variable defined as
βt(i) = P(Ot+1Ot+2 · · ·OT |qt = Si,λ) (15)

Based on [29], αt(i) and βt(i) can be solved inductively.

By using γt(i), we can solve for the individually most likely

state qt at time t, as
qt = argmax0≤i≤M−1[γt(i)], 1 ≤ t ≤ T (16)

Equ. (16) chooses the most likely state for each t to maximize

the expected number of correct states. In implementation, we

use Viterbi algorithm to find the single best state sequence

(path), denoted by Q∗=q∗1...q
∗
L, i.e., maximizing P(Q,O|λ)

which is equivalent to maximizing P(Q|O,λ) [29], and we

use the method in [30] to re-estimate the parameters A,B,π .
Based on the work [31], the probability distribution of the

next fluctuation observation of the amount of unused resource

can be estimated as

EPT+1(k) =
H

∑
j=1

P(qT+1 = S j|qT = q∗L) ·b j(k) (k ∈ {1, ...,M}) (17)

We consider the observation symbol which has the highest

value of EPT+1(k) as the observation symbol of the next time

T +1, that is, k|EPT+1(k)
=maxM

u=1(EPT+1(u)
).

Given the resource utilization of jobs, CORP uses HMM

to predict the fluctuations of the amount of unused resource

(i.e., peak, center, valley symbols) for the next time period.

Recall that we use deep learning to perform predictions

for the amount of temporally-unused resource at the end

of each window L, denoted by Ŷj. Then, we use HMM to

Authorized licensed use limited to: Florida A& M University. Downloaded on August 03,2025 at 06:41:40 UTC from IEEE Xplore. Restrictions apply.

predict the fluctuations of the amount of unused resource and

adjusts the predicted amount accordingly. We use ût+L to

represent the predicted unused resource with prediction error

correction at time t for a future time t + L. Specifically, if

the predicted observation symbol of unused CPU resource

falls in the valley, CORP reduces the predicted amount by

ût+L = r̂ j1 − min(hcpu − mcpu,mcpu − lcpu) (suppose the first

resource type in Ŷj is CPU), where mcpu is the average value

of unused CPU resource in the historical data, hcpu is the

highest amount of unused resource within a period, and lcpu is

the lowest amount of unused resource within a period. If the

predicted unused CPU resource falls in the peak, CORP makes

the adjustment by ût+L = r̂ j1 +min(hcpu −mcpu,mcpu − lcpu).
The reasons for using min(hcpu −mcpu,mcpu − lcpu) to correct

overestimation (or underestimation) errors are as follows. First,

hcpu−mcpu and mcpu− lcpu indicate the deviation between the

amount of unused resource in peak and the average of the

unused resource, and the amount of unused resource in valley

and the average of unused resource. The predicted amount

may be close to mcpu. Therefore, such adjustment can make

the predicted unused resource closer to the actual amount of

unused resource if it is in the peak or valley. Second, we use

min because it is more conservative for ensuring sufficient

resource being able to allocated to jobs.
2) Prediction with Confidence Intervals: To ensure the

accuracy of the prediction, we use a confidence interval for the

probability that the resource will be available. The confidence

interval is an estimate of the range of values within which

the true value should lie with a certain confidence level

(in the form of probability denoted by η). The higher the

confidence level, the wider the confidence interval, and the

more conservative the predictions. The confidence interval

calculation depends on the variance of the prediction errors

and the confidence level η . Let θ = 1−η be the significance

level. The confidence interval is
[ût+L − σ̂ · z θ

2
, ût+L + σ̂ · z θ

2
] (18)

where ût+L is the forecast for unused resource at time t for a

future time t +L, σ̂ is the estimated standard deviation (SD)

for the prediction errors, and z θ
2

is the value for the 100 · θ
2

percentile in the standard normal distribution.
Based on a given confidence interval, the predicted amount

of unused resource for time t +L is adjusted as follows
ût+L = ût+L − σ̂ · z θ

2
(19)

We use the lower bound of the confidence interval in Equ. (19)

because the underestimation of the unused resource makes it

conservative in reallocating allocated resources, thus avoiding

SLO violations.

Based on the historical data with prediction error samples,

we calculate the prediction error in a time window as follows
δt+τ = ut+τ − ût+L,∀τ ∈ [1,L] (20)

That is, we calculate the prediction error for each time slot

in the window τ ∈ [1,L] by subtracting the predicted unused

resource at time t from the actual amount of unused resource

at each time slot.

3) Probabilistic-based Resource Preemption: Let ε denote

pre-specified prediction error tolerance and Pth denote a pre-

VM1

VM2

Job 1

Job 2

CPU

Sto
rag

e

(a) Without packing

VM1

VM2

Job 1

Job 2

CPU

Sto
rag

e

(b) With packing

Fig. 4: Allocate the resource of VMs to the jobs W/o and W/ packing strategy.

defined probability threshold. For a predicted temporarily-

unused resource with prediction error δt+L, if δt+L satis-

fies [32] Pr(0 ≤ δt+L < ε)≥ Pth (21)

then it can be allocated to a new arriving job, and we call it

as unlocked predicted unused resource.

B. Recourse Allocation Algorithm
CORP periodically predicts the allocated and unused re-

sources in each VM. For newly arriving jobs, CORP conducts

packing to pack complementary jobs, and then allocates unal-

located resources to the packed jobs based on their resource

demands. The job packing is used to avoid resource fragmen-

tation and achieve high resource utilization. In the following,

we first present an example to show the complementary job

packing, and then explain its algorithm. Then, we present

the resource allocation algorithm that reallocates unlocked

predicted unused resources to newly arriving jobs. Finally, we

present an example to show this algorithm.
Figure 4 shows an example illustrating how packing strategy

decreases the resource fragmentation and increases resource

utilization. In Figure 4(a), job 1 (CPU intensive) and job 2 (s-

torage intensive) are assigned to VM1 and VM2, respectively,

which increases VMs’ resource fragmentation. However, in

Figure 4(b), job 1 and job 2 are packed first and then assigned

to VM2, which releases VM1, and thus decreases the resource

fragmentation of VMs and increases the resource utilization.
Each job has a dominant resource, defined as the one that re-

quires the most amount of resource. CORP first packs the jobs

with complementary dominant resources such that the summa-

tion of the deviation of the two jobs’ resource demands on each

resource type is the largest. Given a list of jobs, CORP fetches

each job Ji, and tries to find its complementary job from the

list to pack with Ji. Note that it is possible that job Ji’s comple-

mentary job cannot be found from the list. In this case, the job

Ji solely constitutes an entity to be allocated with resources in

a VM. To find Ji’s complementary job, CORP calculates its

deviation with every other job Jj if Jj has different dominant

resource from Ji. The deviation is calculated by DV (j, i) =
∑l

k=1((d jk − d jk+dik
2)2 +(dik − d jk+dik

2)2). Finally, the job with

the highest deviation value is the complementary job of Ji.

After the job packing, CORP needs to assign each job entity

(packed jobs or a job) to a VM with unlocked predicted unused

resources. Among the VMs with unlocked predicted unused

resources that can satisfy the resource demand of the job

entity, we will choose the VM that has the least remaining

resources (called most matched VM) in order to more fully

utilize resources. If predicted unused resources cannot satisfy

the resource demand of the job entity, unallocated resources

in a VM will be used for the job entity using the same

Authorized licensed use limited to: Florida A& M University. Downloaded on August 03,2025 at 06:41:40 UTC from IEEE Xplore. Restrictions apply.

<15, 1, 30> <25, 2, 30>

VM1

Server 1

Job 2 <15, 1, 20>

Job 4 <2, 0.5, 7> Job 5 <3, 0.5, 6> Job 3 <7, 0.5, 2> Job 6 <7, 0.5, 1.5>

Job 1 <10, 1, 10>

VM2

<20, 2, 30> <20, 2, 20>
Server 2

Job 7 <10, 1, 11.5>

VM3 VM4

Fig. 5: Allocate unused resource to (packed) jobs with low resource wastage.

method. To find the most matched VM, we introduce a concept

called unused resource volume. Suppose the vector of the

maximum capacity of each resource type among all VMs is

C′ =<C′
1,C

′
2, . . . ,C

′
l >. Assume that the amount of predicted

unused resource of VM j is R̂ j =(r̂ j1, ..., r̂ jl). Then, the unused

resource volume of VM j is calculated by

volume j =
l

∑
k=1

r̂ jk/C′
k (22)

The VM satisfying the resource demand and has the smallest

unallocated volume is the most matched VM.
Figure 5 shows an example illustrating the process of

job packing and how CORP allocates the predicted unused

resource to a job entity. For VMs, the numerical values

indicate the capacities of different resource types. For jobs,

the numerical values indicate the resource demands of jobs.

Job 3, job 4, job 5 and job 6 are new arriving jobs. The

dominant resource of jobs 3 and 6 is CPU, and the dominant

resource of jobs 4 and 5 is storage. CORP first conducts job

packing. The resource demand deviation of job 3 and job 4 is

25, and that of job 3 and job 5 is 16. Since 25 > 16, job 3

and job 4 are packed together. Similarly, job 5 and job 6 are

packed together. We denote the job entities as (job 3, job 4)

and (job 5 and job 6). The maximum CPU, MEM and storage

of all VMs among both servers are C′ =< 25,2,30 >. If the

amount of unlocked predicted unused resource of VMs 1-4

are as follows: < 5,0,20 >, < 10,1,10 >, < 20,2,30 > and

< 10,1,8.5 >, respectively, based on Equ. (22), their unused

resource volumes are 0.867, 1.233, 2.8, 1.183, respectively. To

allocate resources to entity (job 3, job 4), CORP first checks if

the VMs’ predicted unused resources can satisfy the demands

on each type of resource of the entity. Then, CORP chooses

the VM that has the smallest unused resource volume to be

allocated to the job entity. In this example, VM1 and VM4

cannot satisfy its resource requirements of the packed job

(jobs 3, 4). By comparing the unused resource volumes of

VM2 and VM3, because 1.233 < 2.8, then CORP chooses

VM2 rather than VM3 and allocates its temporarily-unused

resource to the packed job (job 3 and job 4). Similarly, the

predicted unused resource of VM1 cannot satisfy the resource

requirements of the packed job (job 5, job 6). By comparing

the unused resource volumes of VM2, VM3 and VM4, because

1.183 < 1.233 < 2.8, then CORP chooses VM4 and allocates

its temporarily-unused resource to the packed job (job 5 and

job 6). The above process of allocating unused resource to

jobs also applies to the single job case.

IV. PERFORMANCE EVALUATION

In this section, we present our trace-driven

experimental results on a large-scale real cluster,

TABLE II: Parameter settings.
Parameter Meaning Setting Parameter Meaning Setting

Np # of servers 30-50 h # of layers in DNN 4 [33]
Nv # of VMs 100-400 Nn # of units per layer 50
|J| # of jobs 50-300 H # of states in HMM 3
l # of resc. types 3 θ Significance level 5%-30%

Pth Prob. threshold 0.95 η Confidence level 50%-90%

Clemson University’s high-performance computing (HPC)

resource [34], and Amazon EC2 [35], respectively.

0

0.1

0.2

0.3

0.4

0.5

0.6

50 100 150 200 250 300

CP
U

pr
ed

ict
io

n
er

ro
r r

at
e

Number of jobs

DRA RCCR CloudScale CORP

Fig. 6: Prediction error rate of different
methods on a real cluster.

To show the performance

of CORP, we compared

CORP with RCCR [4],

CloudScale [26], DRA [36]

in various scenarios since all

these methods share the same

objective of maximizing the

resource utilization while

avoiding SLO violation.

RCCR uses time series

forecasting to predict the fraction of unused resources that

will almost certainly not be required in the future based on

historical resource usage patterns and allocates the unused

resource to long-term service jobs in an opportunistic manner.

CloudScale employs online resource demand prediction and

prediction error handling to adaptively allocate the resources

on PMs to VMs to achieve high resource utilization. DRA

provides the cloud customer with the abstraction of buying

bulk capacity (rather than pre-defined VM configurations

based on the peak demands of the applications). DRA first

purchases capacity for the customers, and then re-distributes

the purchased capacity among customer’s VMs based on their

demand. Specifically, DRA considers the share value and the

demand value of VMs and allocates the aggregate amount of

capacity purchased by the customers among the VMs in an

equitable manner taking into account shares and not giving

the VMs more than what they demand.

In the implementation on the real cluster, we applied for 50

nodes, and we simulated a node as a PM, and we simulated a

logic disk as a VM; in the implementation on Amazon EC2,

we applied for 30 nodes, each node is simulated as a VM

(It does not compromise the result much, though the setting

is a little different from that in the cluster). For CORP, we

first used the deep learning algorithm to predict the amount

of unused resource of jobs running on the VMs based on the

historical resource usage data from the Google trace. Next, we

used the HMM model to predict fluctuations of the amount

of unused resource of jobs, and we adjusted the predicted

amount for the peak and valley of the unused resource. Then,

we packed two jobs with complementary dominant resources

such that the summation of the deviation of the two jobs’

resource demands on each resource type is the largest (see

Section III-B). Finally, we chose the VM that has the least

remaining resources that can satisfy the resource demands of

job(s) and allocated it to the job(s) (see Section III-B) (We

know the capacity for each type of resource of a VM, and we

can know the amount of unused resources of each VM after

we get the amount of unused resource of jobs and the amount

of resource allocated to jobs). For RCCR, we first used a

Authorized licensed use limited to: Florida A& M University. Downloaded on August 03,2025 at 06:41:40 UTC from IEEE Xplore. Restrictions apply.

0%

10%

20%

30%

40%

50%

50 100 150 200 250 300
CP

U
ut

iliz
at

io
n

Number of jobs

DRA RCCR CloudScale CORP

(a) CPU

0%

10%

20%

30%

40%

50%

50 100 150 200 250 300

M
EM

 u
til

iza
tio

n

Number of jobs

DRA RCCR CloudScale CORP

(b) Memory

0%

5%

10%

15%

20%

25%

30%

50 100 150 200 250 300

St
or

ag
e u

til
iza

tio
n

Number of jobs

DRA RCCR CloudScale CORP

(c) Storage
Fig. 7: Utilizations of different resource types vs. number of jobs of different methods on a real cluster.

time series forecasting technique, i.e., Exponential Smoothing

(ETS), to predict the amount of unused resource of VMs.

Then we calculated confidence intervals and chose the lower

bound of the confidence interval as the predicted value for a

time window ΔW . Finally, we randomly chose a VM that can

satisfy the resource demands of a job and allocated resource

to the job without considering job packing. For CloudScale,

we first used the prediction model developed in [37] and a

discrete-time Markov chain to predict the amount of unused

resource of VMs based on historical resource usage data. Then

we extracted the burst pattern to get the padding value and

calculated the prediction errors by subtracting the predicted

amount of unused resource from the actual amount of unused

resource. Next, we used the adaptive padding that is based on

the recent burstiness of resource usage and recent prediction

errors to correct the prediction errors. Finally, we also

randomly chose a VM that can satisfy the resource demands

of the job and allocated the unallocated resource to the job

without considering job packing. For DRA, we simulated

the purchased capacity as the total amount of resource of all

VMs that are used to be allocated to jobs. For each VM, we

defined two properties: share and demand. We statically set

the share value at the time of VM creation so that the VMs

had a mix of high, medium and low shares that correspond to

a ratio of 4:2:1, respectively. We used the run-time software

to periodically estimate the amount of unused resource of

VMs based on the historical resource usage data. Then, we

redistributed the purchased capacity among different VMs

based on their shares and demands. Finally, we randomly

chose a VM that can satisfy the resource demands of the job

and allocated the unallocated resource to the job.

We first deployed our testbed on the real cluster using 50

servers and then conducted experiments on the real-world A-

mazon EC2 using 30 servers. The servers in the real cluster are

from HP SL230 servers (E5-2665 CPU, 64GB memory) [34].

The servers in Amazon EC2 are from commercial product HP

ProLiant ML110 G5 servers (2660 MIPS CPU, 4GB memory).

In both experiments, each server is set to have 1GB/s band-

width and 720GB disk storage capacity. In both experiments,

we used the trace from Google [38] which records the resource

requirements and usage of tasks every 5 minutes. Most of the

jobs in the Google trace are short jobs [6]. The resource usage

of long-lived jobs has some patterns, and by using the original

Google trace, the approaches without considering the fluctua-

tions of the amount of unused resource may also handle the

prediction of jobs’ amount of unused resource. Therefore, we

removed the long-lived jobs from the Google trace because it

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

5% 10% 15% 20% 25% 30%

Ov
er

al
l u

til
iza

tio
n

SLO violation rate

DRA RCCR CloudScale CORP

Fig. 8: Resource utilization vs. SLO vi-
olation rate on a real cluster.

0%

5%

10%

15%

20%

25%

50% 60% 70% 80% 90%

SL
O

vi
ol

at
io

n
ra

te

Confidence �����s

DRA RCCR CloudScale CORP

Fig. 9: SLO violation rate vs. confi-
dence levels on a real cluster.

can fully verify if CORP can really overcome the limitations of

the other approaches for handling the prediction of the amount

of unused resource of short-lived jobs, and it thus makes the

evaluation of CORP’s performance more convincible (CORP

can also achieve good results using the original Google trace

because it can handle both long-lived and short-lived jobs

with deep learning and HMM model). We transformed the

remaining of the 5-minute trace into 10-second trace, and we

set the CPU, memory and storage consumption for each job

based on the Google trace [38]. In the trace, we considered

the tasks of jobs in the trace as short-lived jobs, the bandwidth

consumption for each short-lived job is set as 0.02 MB/s [39].

SLO is specified by using a threshold on the response time

of a job, and the threshold is set based on the execution time

of a task in the trace. To fully verify the performances of our

method and the other three methods, we varied the number of

jobs from 50 to 300 with step size of 50. Table II shows the pa-

rameter settings in our experiment unless otherwise specified.

A. Experimental Results on the Real Cluster
We first calculated the prediction error of CPU by sub-

tracting the predicted amount of unused resource from the

actual amount of unused resource for each job. Then we

calculated the ratio of the correctly predicted jobs (the jobs

whose prediction errors are within [0,ε)) to the number of

jobs as the prediction error rate which ranges from 0 to

1. Figure 6 shows the relationship between the prediction

error rate and the number of jobs. We see that the pre-

diction error rate follows CORP<RCCR<CloudScale<DRA.

The prediction error rate in RCCR is higher than that in CORP

because CORP takes advantage of deep learning which can

detect complex interactions among features and can learn low-

level features from minimally processed raw data. Also, the

prediction accuracy of the deep learning algorithm does not

rely on the assumption that the historical data for prediction

has patterns, which can decrease the prediction error rate

generated by the data pattern assumption, and it is suitable

for short-lived jobs. Moreover, CORP adequately considers

the fluctuations of the unused resource caused by the bursts

Authorized licensed use limited to: Florida A& M University. Downloaded on August 03,2025 at 06:41:40 UTC from IEEE Xplore. Restrictions apply.

of jobs’ resource demands and utilizes HMM model to correct

the prediction errors, which reduces the prediction error rate.

0

5

10

15

20

25

Ov
er

he
ad

 (s
ec
on

ds
) CORP RCCR

CloudScale DRA

CORP RCCR CloudScale DRA CORP RCCR CloudScale DRA CORP RCCR CloudScale DRA CORP RCCR CloudScale DRA
Fig. 10: Overhead of different methods
on a real cluster.

However, RCCR uses a time

series forecasting method of

which the accuracy relies on

the existence of patterns in

resource usage [40], [41], to

predict the unused resource

for long-running service jobs,

which can increase the error

rate when the resource usage

does not have patterns. Also, RCCR does not adequately

consider the fluctuations of the unused resource of short-lived

jobs caused by their bursts of resource demands, which can

increase the error rate, and thus is not suitable for short-lived

jobs. CloudScale generates higher prediction error rate than

CORP and RCCR because CloudScale’s prediction accuracy

relies on the assumption of the existence of data patterns in the

historical data, which can increase the error rate caused by the

data pattern assumption. Although CloudScale uses a multi-

step Markov prediction to dealing with the prediction when

pattern is not found, it has limited prediction accuracy since

the correlation between the resource prediction model and the

actual resource demand becomes weaker. Also, CloudScale

does not utilize confidence levels to make appropriately-

conservative predictions and thus reduce the error rate. The

prediction error rate in DRA is higher than all the other

methods because DRA does not consider the fluctuations of

unused resource, which can increase the prediction error rate.

Also, DRA uses the run-time software to estimate the resource

periodically, the accuracy of which also relies on the existence

of patterns in the training data. In addition, DRA does not

utilize confidence levels to make appropriately-conservative

predictions and reduce the error rate.

We used Equ. (1) to calculate the resource utiliza-

tion of type j resource. Figure 7 shows the relation-

ship between the resource utilization and the number of

jobs. We observe that the resource utilization follows

CORP>RCCR>CloudScale>DRA. The resource utilization

in CORP is higher than that in RCCR because CORP lever-

ages complementarity of jobs’ demands on different resource

types and uses a job packing strategy to reduce the resource

fragmentation. Also, CORP uses deep learning to predict the

unused resource, and adequately considers the fluctuations

of short-lived jobs’ unused resource, and uses the HMM

model to correct the prediction error, and then dynamically

allocates the resource to jobs to well meet the requirement of

time-varying resource demands and decreases the probability

of resource over-provisioning, which is suitable for short-

lived jobs. However, RCCR uses a time series forecasting

to predict the unused resource for long-term service jobs

which is not suitable for short-lived jobs, and the prediction

accuracy relies on the existence of patterns in the training

data, which can increase the prediction error rate and thus

increase the chance of over-provisioning, decreasing the re-

source utilization. Also, RCCR does not adequately consider

the fluctuations of the unused resource in short-lived jobs,

which can increase the error rate and thereby increase the

probability of over-provisioning. The resource utilizations in

CORP and RCCR are higher than that in CloudScale and

DRA. This is because CORP and RCCR allocate the resource

to jobs in an opportunistic approach in which the allocated

unused resource can be reallocated to other new arriving jobs

with a certain probability, which can increase the resource

utilization. DRA has the lowest resource utilization among

all the methods because DRA neglects the fluctuations of

the resource which can result in inaccurate prediction of the

resource and thus may lead to over-provisioning. Also it is

a demand-based resource allocation and does not utilize the

allocated but unused resource and reallocate it to other jobs

to increase the resource utilization.

We used Equ. (2) to calculate the overall resource utilization

(the weighted average of the utilizations of CPU, MEM and

storage). Compared to CPU and MEM, storage is not the

bottleneck resource, hence we set the weights for CPU,

MEM and storage as 0.4, 0.4 and 0.2, respectively. We varied

the SLO violation rate by varying the probability threshold

Pth and thereby varying the percentage of jobs that have

SLO violation. Specifically, we considered the SLO violation

occurs when a job’s response time exceeds the threshold on its

response time (We assume jobs’ response time is affected by

the unavailability of resource for job processing [42], [43]).

We recorded the overall resource utilization when the SLO vi-

olation rate (approximately) equals 5%, 10%, 15%, 20%, 25%

and 30%. Figure 8 shows the relationship between the overall

resource utilization and the SLO violation rate. We find the

overall resource utilization increases as the SLO violation rate

increases. This is because the larger the SLO violation rate,

the lower the probability that the resource over-provisioning

occurs and thus the higher the overall resource utilization.

Also, we see that given an SLO violation rate, the overall re-

source utilization follows CORP>RCCR>CloudScale>DRA

due to the same reasons in Figure 7.

Figure 9 shows the relationship between the SLO violation

rate and the confidence level on a real cluster. From Figure 9,

we find the SLO violation rate decreases as the confidence

level increases. This is because the higher the confidence

level, the more conservative the prediction, and the less the

amount of resource that will be allocated to jobs in the risk

of SLO violations. Also, we find that the SLO violation rate

follows CORP<RCCA<CloudScale<DRA. The reason is that

CORP utilizes deep learning to accurately predict the amount

of unused resource. Also, CORP adequately considers the

fluctuations of the amount of unused resource which can result

in prediction errors and further lead to SLO violation, and

uses HMM model to correct the prediction errors. RCCA uses

a time-series based forecasting to predict the unused resource

with confidence interval prediction and error correction, which

can decrease SLO violation probability. CloudScale uses a pre-

diction error handling to correct prediction errors and perform

online adaptive padding to avoid overestimation errors. How-

ever, DRA does not have a strategy to handle prediction errors.

Authorized licensed use limited to: Florida A& M University. Downloaded on August 03,2025 at 06:41:40 UTC from IEEE Xplore. Restrictions apply.

0%

10%

20%

30%

40%

50%

50 100 150 200 250 300

CP
U

ut
ili

za
tio

n
Number of jobs

DRA RCCR CloudScale CORP

(a) CPU

0%

10%

20%

30%

40%

50%

50 100 150 200 250 300

M
EM

 u
til

iza
tio

n

Number of jobs

DRA RCCR CloudScale CORP

(b) Memory

0%

5%

10%

15%

20%

25%

50 100 150 200 250 300

St
or

ag
e

ut
ili

za
tio

n

Number of jobs

DRA RCCR CloudScale CORP

(c) Storage
Fig. 11: Utilizations of different resource types vs. number of jobs of different methods on Amazon EC2.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

5% 10% 15% 20% 25% 30%

Ov
er

al
l u

til
iza

tio
n

SLO violation rate

DRA RCCR CloudScale CORP

Fig. 12: Resource utilization vs. SLO
violation rate on Amazon EC2.

0%

5%

10%

15%

20%

25%

50% 60% 70% 80% 90%

SL
O

vi
ol

at
io

n
ra

te

Confidence ������

DRA RCCR CloudScale CORP

Fig. 13: SLO violation rate vs. confi-
dence levels on Amazon EC2.

We evaluated the overhead of different methods by

measuring the latency for allocating resource to 300 jobs in

each method. Figure 10 shows the latency of different methods

on a real cluster. In Figure 10, we see that the latency of CORP

is slightly higher than the other methods. This is because

CORP uses the DNN to predict the amount of unused resource

of jobs. The DNN has complex structure with multiple layers,

which obtains accuracy at the expense of computation

overhead and thus increases the latency a little [44]. However,

the other methods do not have such complex structure for

prediction, thus they have relatively lower latency.

B. Experimental Results on Amazon EC2
To further verify the performance of CORP, we also com-

pared CORP with other methods on Amazon EC2. The servers

are from commercial product HP ProLiant ML110 G5 servers

(2660 MIPS CPU, 4GB memory). Each server is set to have

1GB/s bandwidth and 720GB disk storage capacity. Figure 11

shows the relationship between the resource utilization and the

number of jobs on Amazon EC2. We also see the resource uti-

lization increases as the number of jobs increases, and the re-

source utilization follows CORP>RCCR>CloudScale>DRA

due to the same reasons explained in Figure 7. By examining

Figures 11(a)-11(c), we see that the utilizations of CPU and

MEM are higher than storage. This is because the storage is

not the bottleneck resource and has more wastage in allocation

compared to CPU and MEM, thereby has lower resource

utilization.

5

10

15

20

25

30

Ov
er

he
ad

 (s
ec
on

ds
) CORP RCCR

CloudScale DRA

CORP RCCR CloudScale DRA
Fig. 14: Overhead of different methods
on Amazon EC2.

Figure 12 shows the rela-

tionship between the overal-

l resource utilization and the

SLO violation rate on Ama-

zon EC2. Figure 12 mirrors

Figure 8 due to the same rea-

sons. Figure 13 shows the re-

lationship between the SLO

violation rate and the confi-

dence level on Amazon EC2. We also find that given a

confidence level, the SLO violation rate decreases as the

confidence level increases and the SLO violation rate follows

CORP<RCCA<CloudScale<DRA due to the same reasons

explained in Figure 9.
Figure 14 shows the overhead of different methods mea-

sured by the latency for allocating resource to 300 jobs on

Amazon EC2. Figure 14 mirrors Figure 10 due to the same

reasons. Comparing Figure 14 and Figure 10, we see that the

latency in Figure 14 is relatively higher than that in Figure 10.

This is because the communication overhead in Amazon EC2

is relatively higher than that in the cluster.
Our experimental results based on the real cluster and

Amazon EC2 show that CORP has the best overall perfor-

mance. This is because CORP explores the potential tradeoff

between the efficiency and computation overhead by using

deep learning and HMM to get high prediction accuracy of

unused resource and utilizing job packing together to obtain

high resource utilization.

V. RELATED WORK

To increase resource utilization in a cloud system, some

works [4], [7] and product [8] provide methods of reallocat-

ing allocated unused resources to new jobs opportunistically.

Marshall et al. [7] presented reusing unused cloud resources by

offering leases in an opportunistic and preemptible way with

no SLO guarantees. Amazon EC2 Spot Instances [8] offers

opportunistic resources with no SLO guarantees. Users can

use spot instances only if their bids exceed the spot price,

which is updated every five minutes. Recently, Carvalha et
al. [4] presented a method to provide a portion of the unused

resources with long-term availability SLOs. The method in

uses time series forecasting with the assumption that the

resource usage patterns exist in training data to predict the

unused used resource for long-term service jobs. However,

this method is not suitable for processing short-lived jobs

because such jobs usually do not exhibit certain resource

utilization patterns. Also, it fails to consider fluctuations of

unused resource caused by time-varying resource demands

of short-lived jobs. In addition, these methods may result in

resource fragmentation and lead to low resource utilization

because they neglect jobs’ resource intensity in multi-resource

allocation and may allocate much more resources to the jobs.
Many other works on resource provisioning also have been

proposed to improve the resource utilization. The works [26],

[36], [45], [46] try to improve the resource utilization by

predicting the resource demands and allocating the resources

based on the predicted demands. However, the above works

do not focus on reallocating the allocated unused resources to

increase the resource utilization.

Authorized licensed use limited to: Florida A& M University. Downloaded on August 03,2025 at 06:41:40 UTC from IEEE Xplore. Restrictions apply.

Unlike previous works, CORP first predicts the amount

of allocated but unused resource using the deep learning

technique, in which the accuracy does not rely on the existence

of resource utilization patterns of short-lived jobs. CORP

additionally considers the fluctuations of unused resource and

uses HMM model to correct prediction errors. Also, CORP

packs jobs with complementary resource requirements to VMs

to reduce the resource fragmentation and further increase the

resource utilization. Thus our proposed method CORP can

fully utilize the resource while reducing SLO violation rate.

VI. CONCLUSIONS

In this paper, in order to increase the resource utilization

and reduce SLO violation rate, we proposed CORP for short-

lived jobs, which offers the temporarily-unused resource in an

opportunistic manner. CORP is different from previous works

in three aspects. First, using the deep learning technique, it can

more accurately predict the amount of allocated and unused

resources of short-lived jobs, which do not have resource usage

patterns. Second, it additionally considers the fluctuations of

unused resource caused by time-varying resource demands of

jobs to correct the prediction. Third, it leverages complemen-

tarity of jobs’ requirements on different resource types and

packs jobs with complementary requirements on resources

to the same VM to further increase the resource utilization.

Our extensive experimental results based on a real cluster

and Amazon EC2 show our method achieves high resource

utilization and provides high SLO guarantee. In the future,

we will further consider designing a distributed deep learning

training system to reduce the computation overhead caused

by DNN, and we will consider both short-lived and long-lived

jobs and design an efficient resource allocation strategy which

can more increase the resource utilization while reducing the

SLO violation rate. Also, we will consider the fluctuation of

the workloads, and we will use different real workloads to

fully verify the performance of our method.
ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants

NSF-1404981, IIS-1354123, CNS-1254006, IBM Faculty

Award 5501145 and Microsoft Research Faculty Fellowship

8300751. REFERENCES

[1] W. Shi, L. Zhang, C. Wu, Z. Li, and F. Lau. An online auction framework
for dynamic resource provisioning in cloud computing. In Proc. of
SIGMETRICS, Austin, June 2014.

[2] S. Dutta and A. Verma. Service deactivation aware placement and
defragmentation in enterprise clouds. In CNSM, pages 1–9, 2011.

[3] Y. Fu, J. S. Chase, B. N. Chun, S. Schwab, and A. Vahdat. Sharp: an
architecture for secure resource peering. In Proc. of ACM SOSP, 2003.

[4] M. Carvalho, W. Cirne, F. Brasileiro, and J. Wilkes. Long-term slos for
reclaimed cloud computing resources. In Proc. of SoCC, Seattle, 2014.

[5] L. Zheng, C. Joe-Wong, C. W. Tan, M. Chiang, and X. Wang. How to
bid the cloud. In Proc. of SIGCOMM, London, 2015.

[6] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch.
Heterogeneity and dynamicity of clouds at scale: Google trace analysis.
In Proc. of SoCC, San Jose, October 2012.

[7] P. Marshall, K. Keahey, and T. Freeman. Improving utilization of
infrastructure clouds. In IEEE/ACM CCGrid, pages 205–214, 2011.

[8] Amazon EC2 instance purchasing options. https://aws.amazon.com
/ec2/purchasing-options [accessed in Mar. 2016].

[9] P. Delgado, F. Dinu, A.-M. Kermarrec, and W. Zwaenepoel. Hawk:
Hybrid datacenter scheduling. In Proc. of ATC, 2015.

[10] X. Wang, E. Perlman, R. Burns, T. Malik, T. Budavari, C. Meneveau,
and A. Szalay. Jaws: Job-aware workload scheduling for the exploration
of turbulence simulations. In Proc. of SC, 2010.

[11] Y. Chen, S. Alspaugh, and R. Katz. Interactive analytical processing in
big data systems: across-industry study of mapreduce workloads. Proc.
of VLDB Endowment, 5(12):1802–1813, 2012.

[12] J. Liu, H. Shen, and X. Zhang. A survey of mobile crowdsensing
techniques: A critical component for the internet of things. In Proc. of
6th International Workshop on Context-aware Performance Engineering
for the Internet of Things (ContextQoS) in conjunction with ICCCN’16,
Waikoloa, 2016.

[13] H. Shen, J. Liu, K. Chen, J. Liu, and S. Moyer. SCPS: A social-
aware distributed cyber-physical human-centric search engine. IEEE
Transactions on Computers (TC), 64:518–532, 2015.

[14] V. Nae, A. Iosup, S. Podlipnig, R. Prodan, D. Epema, and T. Fahringer.
Efficient management of data center resources for massively multiplayer
online games. In Proc. of SC, 2008.

[15] J. Liu and H. Shen. Dependency-aware and resource-efficient scheduling
for heterogeneous jobs in clouds. In Proc. of CloudCom, 2016.

[16] A. van den Oord, S. Dieleman, and B. Schrauwen. Deep content-based
music recommendation. In Proc. of NIPS, pages 2643–2651, 2013.

[17] D. Chicco, P. Sadowski, and P. Baldi. Deep autoencoder neural networks
for gene ontology annotation predictions. In ACM BCB, 2014.

[18] Z. Ghahramani. Probabilistic machine learning and artificial intelligence.
Nature, 521:452–459, 2015.

[19] H. Shen, Z. Li, J. Liu, and J. E. Grant. Knowledge sharing in the
online social network of yahoo! answers and its implications. IEEE
Transactions on Computers (TC), 64(6):1715C1728, June 2015.

[20] A. Rai, R. Bhagwan, and S. Guha. Generalized resource allocation for
the cloud. In Proc. of SoCC, San Jose, October 2012.

[21] H. Shen, A. Sarker, L. Yu, and F. Deng. Probabilistic network-aware
task placement for mapreduce scheduling. In Proc. of IEEE Cluster,
2016.

[22] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521:436–
444, 2015.

[23] J. Liu, H. Shen, and L. Yu. Question quality analysis and prediction in
community question answering services with coupled mutual reinforce-
ment. TSC, PP(99):1–14, 2015.

[24] Z. Yuan, Y. Lu, Z. Wang, and Y. Xue. Droid-sec: Deep learning in
android malware detection. In SIGCOMM, pages 371–372, 2014.

[25] J. Zhang, G. Tian, Y. Mu, and W. Fan. Supervised deep learning with
auxiliary networks. In Proc. of KDD, New York, 2014.

[26] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. Cloudscale: Elastic resource
scaling for multi-tenant cloud systems. In Proc. of SoCC, Oct. 2011.

[27] Q. V. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, and A. Y. Ng.
On optimization methods for deep learning. In Proc. of ICML, 2011.

[28] Q. Zhu and T. Tung. A performance interference model for managing
consolidated workloads in QoS-aware clouds. In IEEE CLOUD, 2012.

[29] L. R. Rabiner. A tutorial on hidden markov models and selected
applications in speech recognition. Proc. of IEEE, 77(2):257–286, 1989.

[30] M. Stamp. A revealing introduction to hidden markov models. January
18, 2004, http://www.cs.sjsu.edu/faculty/stamp/RUA/HMM.pdf.

[31] W. Gao and G. Cao. Fine-grained mobility characterization: Steady and
transient state behaviors. In Proc.of MOBIHOC, Chicago, 2010.

[32] J. Liu, L. Yu, H. Shen, Y. He, and J. Hallstrom. Characterizing data
deliverability of greedy routing in wireless sensor networks. In Proc. of
SECON, Seattle, June 2015.

[33] Y. Lv, Y. Duan, W. Kang, Z. Li, and F. Wang. Traffic flow prediction
with big data: A deep learning approach. ITS, 16(2):865–873, 2015.

[34] Palmetto cluster. http://citi.clemson.edu/palmetto/ [accessed in Mar.
2016].

[35] Amazon EC2. http://aws.amazon.com/ec2 [accessed in Mar. 2016].
[36] G. Shanmuganathan, A. Gulati, and P. Varman. Defragmenting the cloud

using demand-based resource allocation. In SIGMETRICS, 2013.
[37] Z. Gong, X. Gu, and J. Wilkes. Press: Predictive elastic resource scaling

for cloud systems. In Proc. of CNSM, 2010.
[38] Google trace. https://code.google.com/p/googleclusterdata/ [accessed in

Mar. 2016].
[39] A. L. Shimpi. The SSD anthology: Understanding SSDs and new drives

from OCZ. Feb. 2014. http://dx.doi.org/10.1007/s11276-005-6612-9.
[40] C. Chatfield. The analysis of time series. Texts in Statistical Science,

Chapman & Hall, sixth edition, 2004.
[41] T. Taskaya-Temizel and M.C. Casey. Configuration of neural networks

for the analysis of seasonal time series. In Proc. of ICAPR, 2005.
[42] U. Sharma, P. Shenoy, and S. Sahu. A flexible elastic control plane for

private clouds. In Proc. of CAC, Miami, August 2013.
[43] J. Liu and H. Shen. A low-cost multi-failure resilient replication scheme

for high data availability in cloud storage. In Proc. of HiPC, 2016.
[44] N. D. Lane and P. Georgiev. Can deep learning revolutionize mobile

sensing? In Proc. of HotMobile, Santa Fe, 2015.
[45] C. Curinom, D. E. Difallahu, C. Douglasm, S. Krishnanm, R. Ramakr-

ishnanm, and S. Raom. Reservation-based scheduling: If you’re late
don’t blame us! In Proc. of SoCC, Seattle, Nov. 2014.

[46] C. Delimitrou and C. Kozyrakis. Quasar: Resource-efficient and qos-
aware cluster management. In Proc. of ASPLOS, pages 127–143, 2014.

Authorized licensed use limited to: Florida A& M University. Downloaded on August 03,2025 at 06:41:40 UTC from IEEE Xplore. Restrictions apply.

