
Falcon: An Efficient Dependency-Aware Scheduling for

High Throughput and Resource Utilization in Clouds

Jinwei Liu∗, Rui Gong†, Richard A. Alo∗, Wei Dai‡, Richard A. Long§, Pierre Ngnepieba§
∗Department of Computer and Information Sciences, Florida A&M University, Tallahassee, FL 32307, USA

†Department of Informatics and Mathematics, Mercer University, Macon, GA 31207, USA
‡Department of Computer Science, Purdue University Northwest, Hammond, IN 46323, USA
§College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA

∗{jinwei.liu, richard.alo}@famu.edu, †gong r@mercer.edu, ‡weidai@pnw.edu,
§{richard.long, pierre.ngnepieba}@famu.edu

Abstract—Diverse workloads in modern datacenters increas-
ingly comprise data parallel jobs. Production data parallel jobs
have complex dependency structure (e.g., complex task depen-
dencies) and heterogeneous resource demands. It is challenging
to design a scheduler with high throughput for the data parallel
applications in clouds. Preemption is also necessary to provide
short waiting time for high priority jobs/tasks. Previous studies on
scheduling and preemption do not fully utilize task dependency
to increase throughput, and they usually have high overhead
caused by the preemption (time overhead of context switch-
ing). To address this challenge, we propose Falcon, an efficient
dependency-aware scheduling for high throughput and resource
utilization as well as low overhead in clouds. Falcon utilizes
task dependency information to determine tasks’ priorities for
reducing the overhead caused by preemption, and it also packs
complementary tasks (tasks whose demands on multiple resource
types are complementary to each other) for improving the
resource utilization. Extensive testbed results based on a real
cluster and experiments using real-world Amazon EC2 cloud
service show that Falcon has better performance on throughput
and overhead compared to existing strategies.

Index Terms—scheduling, task dependency, throughput, re-
source utilization, priority, preemption

I. INTRODUCTION

The resources and workloads in production environment can

be both heterogeneous and dynamic [1–3]. Production data-

centers usually run vast number of applications with diverse

characteristics [4], and they encounter increasingly heteroge-

neous workloads [2, 5–7]. In Microsoft production clusters, the

durations of tasks can vary from a few milliseconds to tens of

thousands of seconds [7]. The heterogeneity and dynamicity of

workloads not only challenges the scheduling efficiency (e.g.,

performance improvement on latency and throughput), but also

poses a challenge for improving resource utilization [2, 8, 9].

Public safety requires emergency response that is timely and

efficient. Efficient scheduling of tasks (e.g., live video stream

tasks) can help enhance public safety by powering faster re-

sponses, enhancing situational awareness, optimizing resource

utilization, strengthening disaster recovery, and upholding data

security and compliance [10, 11].

In parallel applications, the dependency between concurrent

tasks (e.g., tasks with execution time 100ms) is increasingly

common. Previous scheduling approaches [12–15] cannot well

handle sub-second parallel jobs with task dependency (a

relationship that requires a particular order for tasks to be exe-

cuted) constraints. They cannot fully utilize task dependency to

increase throughput and satisfy high-priority jobs/tasks while

reducing overhead.

Different jobs/tasks have different priorities, and high pri-

ority jobs/tasks should be served first. To satisfy high pri-

ority jobs/tasks, priority based scheduling is necessary, and

preemption is also needed when a high priority task arrives at

a machine running a lower priority task. However, preemption

amplifies the scheduling challenge [15] (i.e., Preemption incurs

time overhead of context switching). Satisfying high priority

jobs/tasks with less time overhead still has not been well

addressed. Previous works [14, 16–18] adopt priority-based

scheduling to handle the problem of satisfying high priority

jobs, however previous works either cannot satisfy high prior-

ity jobs/tasks well or incur time overhead caused by preemp-

tion. The work [16] proposes Jockey, a priority-based schedul-

ing, and provides latency SLOs for data parallel jobs written

in SCOPE with Jockey. The work [14] proposes a priority-

based low latency distributed scheduling. However, both [16]

and [14] do not support preemption, and thus they cannot truly

satisfy high priority tasks because the high priority tasks have

to wait until the low priority tasks complete. Although the

work [18] presents Natjam, a system that supports arbitrary

job priorities and preemption for MapReduce clusters, Natjam

can easily incur overhead caused by preemption because it

simply preempts a job or task based on only the priorities of

the waiting job (task) and the running job (task). Amoeba [17]

provides instantaneous fairness with elastic queues, and uses

a checkpointing mechanism for preemption. Although tasks

execution can be resumed at safe points, Amoeba can still

incur overhead because it checkpoints the longest-running

tasks without the consideration of other waiting tasks.

To address this problem, in this paper, we aim to develop

Falcon, an efficient dependency-aware scheduling, which can

increase the throughput and resource utilization in clouds.

Falcon outperforms previous schedulers in that it can well han-

dle the scheduling of jobs with dependency constraints (task

dependency), and it can satisfy high-priority tasks and reduce

the time overhead caused by preemption. We summarize the

contributions of this work as follows.
• We propose Falcon, an efficient dependency-aware schedul-

ing, which can increase the throughput and resource utilization

while reducing the overhead in clouds.

• Falcon splits jobs into tasks by taking into account task

dependency, and assigns the tasks that do not depend on each

other to different workers (or different cores of a worker) so

that these tasks can be processed in parallel and the response

time can thus be reduced.

• Falcon leverages the complementary of tasks’ requirements

on different resource types, and it packs complementary tasks

and allocates them to a worker for improving the resource

utilization.

• We propose Selective Preemption (SP), which can satisfy

high-priority tasks and reduce the time overhead caused by

preemption.
The remainder of this paper is organized as follows. Section

II reviews the related work. Section III introduces the system

model used in this paper. Section IV presents the design for our

job scheduler. Section V presents the performance evaluation

for Falcon. Section VI concludes this paper with remarks on

our future work.

II. RELATED WORK

A. Throughput Optimization
Many methods have been proposed for improving through-

put in scheduling. Qiao et al. [19] proposed Pollux to improve

the cluster-wide throughput. Gu et al. [20] proposed Tiresias,

which adopts the Least-Attained Service and Gittins Index

algorithm to increase the job throughput. Amaro et al. [21]

proposed faster swapping mechanisms and a far memory-

aware cluster scheduler. They examined the conditions under

which this use of far memory can increase job throughput.

Vijayakumar et al. [22] proposed a decentralized scheduler,

Murmuration, that can reduce the total wait time of tasks and

increase the throughput of jobs in the system. Unlike the above

methods, Falcon considers the priorities of jobs (tasks) and

uses Selective Preemption to satisfy high-priority tasks and

reduce the time overhead caused by preemption.

B. Improving Resource Utilization
Wang et al. [2] proposed a two-layer, hierarchical scheduler

for achieving low latency for short jobs while maintaining

high resource utilization. Xiang et al. [23] proposed a re-

source management and scheduling system GÖDEL, which

co-locates various workloads on each machine to achieve

better resource utilization and elasticity. Chang et al. [24]

presented Eva, a cloud-based cluster scheduler designed to

serve batch processing workloads cost-efficiently. Eva uses a

reservation price-based scheduling algorithm to jointly opti-

mize task assignment and instance provisioning for improving

resource utilization and reducing cost. Guo et al. [25] proposed

vSched, which probes accurate vCPU abstraction through a set

of lightweight microbenchmarks (vProbers), and leverages the

probed information to optimize task scheduling in cloud VMs.

vSched leverages intra-VM harvesting (IVH) to improve the

resource utilization (vCPU utilization).

In our proposed method, Falcon splits jobs into tasks by

taking the constraints of tasks into account, and assigns the

tasks that do not depend on each other to different machines

(or different cores of a machine) so that these tasks can run

in parallel and the throughput can be increased. Falcon also

takes the constraints of jobs (tasks) on resources into account

and schedules jobs (tasks) with the consideration of improving

resource utilization by packing complementary tasks. Finally,

Falcon considers the priorities of different jobs (tasks) and

uses Selection Preemption to satisfy hight priority tasks while

reducing overhead.

III. SYSTEM MODEL

In this section, we first introduce some concepts and as-

sumptions, then we formulate a research problem. Finally,

we describe our proposed algorithms for improving resource

utilization and reducing time overhead caused by preemption.

A. Concepts and Assumptions
A job is supposed to be split into nt tasks, and the tasks

are assigned to workers (e.g., virtual machines) based on tasks’

resource demands and task dependency. We assume jobs can

be handled by any scheduler and tasks are run by workers in

a fixed number of slots. A buffer queue is used to queue tasks

assigned to a worker when the worker cannot run those tasks

concurrently. We define makespan (or schedule length) as the

time when all jobs finish processing and throughput as the total

number of jobs that complete their execution per time unit.

Problem Statement: Given a set of jobs consisting of tasks,

resource demands of each job/task, constraints of tasks in

each job (e.g., task precedence constraints), a number of

heterogeneous worker machines, and their resource capacity

constraints, what is the makespan? Then, how to design an

efficient scheduler to schedule these jobs so that the throughput

can be maximized while satisfying high priority tasks and

reducing time overhead?

B. Scheduling
Resource scheduling in cloud computing is an NP-hard

problem and has a high computational complexity [24, 26–

28]. Thus, we propose a heuristic method called Falcon. Falcon

first accurately estimates the run time of jobs [29], and it then

utilizes the method in the work [9] to classify jobs into long

and short jobs based on the estimated run time of jobs based

on the extracted features.
1) Improving Resource Utilization: Resource fragmentation

can cause poor resource utilization, and it is crucial to reduce

resource fragmentation [15, 24, 30, 31]. In Microsoft Azure,

even 1% in fragmentation reduction can lead to cost savings

in the order of $100M per year [32]. To improve resource

utilization in clouds, Falcon presents a task packing strategy.

Falcon first packs the tasks with complementary dominant

resources (A dominant resource is defined as the resource

type on which the task has the highest demand) such that the

summation of the deviation of the two tasks’ resource demands

on each resource type is the largest (refer to Eq. (1)). Given

a list of tasks, Falcon fetches each task Ti, and tries to find

its complementary task from the list to pack with Ti. To find

Ti’s complementary task, Falcon uses Eq. (1) to calculate its

deviation with every other task Tj with a different dominant

resource.

DV (j, i) =
l∑

h=1

((djh − djh + dih

2
)2 + (dih − djh + dih

2
)2), (1)

Tasks s

Pro 1

Pro 2

Pro f
Ti+fTi+f+1Ti+f+k-2Ti+f+k-1

Ti+f-1

Ti+1

Ti

Fig. 1: Preemption for multiple tasks running on multiple processors.

where dih is Ti’s resource demand on resource type h (e.g.,

CPU). Finally, the task with the highest deviation value is the

complementary task of Ti. This method can also be applied

to task packing for more tasks (refer to the work [9] for more

details).
2) Resource Allocation: After task packing, Falcon assigns

each task entity (packed tasks or a task) to a server that

meets the resource demand of the task entity and has the least

remaining resources (called most matched server).

C. Selective Preemption
To reduce the waiting time for high priority tasks and

time overhead caused by preemption, we propose Selective
Preemption (SP). It chooses a task among the waiting tasks

with the top priority range with the probability equaling the

task’s normalized priority which is the ratio of the reverse

rank of a task’s priority among all the tasks in the queue to

the number of tasks in the queue.

1) Task Priority Determination: Given a particular and

arbitrary task Tij , the priority of task Tij at time t can be

recursively calculated as follows:
P t
ij =

∑
Tik∈Sij

P t
ik, (2)

where Sij represents a set consisting of Tij’s children. For a

given task (e.g., Tij) that has no dependent tasks, its priority

at time t can be calculated as follows:
P t
ij = ω1 · 1/tremij + ω2 · twij , (3)

where tremij and Tw
ij are task Tij’s remaining time and waiting

time, respectively. ω1 and ω2 are the weights for the task’s re-

maining time and waiting time, respectively, and ω1+ω2 = 1.

Given a worker machine mi, without loss of generality,

suppose there are f running tasks (Ti, ..., Ti+f−1), and there

are k tasks waiting (Ti+f , ..., Ti+f+k−1) in the queue of mi

(see Figure 1). Given a task, the task (say Ti+f) can execute

only if the following three conditions are satisfied:

• Condition C1: The priority of the waiting task Ti+f is

higher than that of the running task, i.e., Pi+f > Pj (j ∈
{i, i+ 1, ..., i+ f − 1}).
• Condition C2: The waiting task Ti+f is independent of the

running task Tj (j ∈ {i, i+ 1, ..., i+ f − 1}).
To understand Condition C3, we first introduce a theorem.

Theorem 4.1. Given a server with f processors, if f tasks
(Ti, ..., Ti+f−1) are running, and k tasks (Ti+f , ..., Ti+f+k−1)
are waiting in the queue of the server, then at most the top
�(1− δ)k� priority tasks are allowed for preemption for each
processor, where δ is the minimum required ratio between 0
and 1.

Proof: According to Formula (5), at least �δk� tasks’

priorities are lower than Pi+f if the preemption is allowed

for the task Ti+f , that is, it allows preemption for at most the

top k − �δk� tasks for each processor. Thus at most the top

�(1− δ)k� priority tasks are allowed for preemption.

Pro
Waiting queue Processor

Worker
Task priorityLow High

Urgent task Running task

Preempting tasks

If = 0.5 and =10,

p g

 tasks waiting in the queue

ks

If = 0.5 and =10,

Fig. 2: An example illustrating the process of selecting a waiting task to
preempt the running task in Falcon.

• Condition C3: The rank of the waiting task’s priority among

all of the waiting tasks in the queue is top �(1− δ)k� (based

on Theorem 4.1) for each processor.
We calculate the priorities of the running tasks

Ti, ..., Ti+f−1 and the waiting tasks Ti+f , ..., Ti+f+k−1

using Eqs. (2) and (3). Define I as an indicator function. For

any two tasks Ti and Tj ,

Iij =
{

1, Pi > Pj

0, Pi ≤ Pj ,
(4)

where Pi and Pj are the priorities of task Ti and task Tj .

For a particular and arbitrary running task Ti in worker

mi, we check if Condition C3 is satisfied using the following

formula: ∑i+f+k−1
j=i+f Ii+f,j

k
≥ δ, (5)

where δ (minimum required ratio between 0 and 1) is related

to the practical application, largely depending on the goal of

the system. In the experiments, we set it to 0.35. To understand

how Formula (5) works, we give an example to illustrate the

process of selecting a waiting task to preempt the running task

(see Figure 2). Suppose there are 10 tasks (T1, ..., T10) in the

waiting queue of a worker, and their priorities are 1, 2, 3, 4,

5, 6, 7, 8, 9, 10. According to Formula (5), the priority of

the waiting task should be no less than �10δ� other waiting

tasks. Also the waiting task should be independent of the

running tasks, thus at most �10(1− δ)� tasks are allowed for

preemption. If δ = 0.5, then at most top 5 priority tasks are

allowed for preemption.

IV. SYSTEM DESIGN

In this section, we introduce the design of Falcon.

A. Architecture of the Scheduler
Figure 3 shows the architecture of Falcon. When a user

submits a job to the cloud system, the system will deliver

the job to the scheduler that is not heavily loaded and has

the smallest geographic distance to the user. The scheduler

first splits the job into tasks, then it distributes the tasks to

r randomly selected masters that are not heavily loaded with

the consideration of task dependency. The masters pack tasks

that have complementary resource requirements based on the

task packing strategy in Section III-B1, and assign task entity

to the workers. The workers choose tasks for execution based

on the Selective Preemption method (Algorithm 1 shows the

scheduling of tasks). The workers periodically report their re-

source information to their master, and the master periodically

updates a table which records the resource information of each

worker associated with the master.

Selective Preemption

Fig. 3: Architecture of Falcon.

Algorithm 1: Task Scheduling()

1 Each master packs complementary tasks based on the task packing
strategy // Section III-B

2 for i ← 1 to m do // m denotes # of masters
3 Assign the task entity to a worker using the resource allocation

algorithm // Section III-B
4 Execute tasks based on the Selective Preemption method

V. PERFORMANCE EVALUATION

We first conducted testbed experiments in a real cluster. We

tested various evaluation metrics and compared our method

with four methods. To further evaluate the performance of our

method, we conducted experiments on the real-world Amazon

EC2 [33]. In the following, we introduce our experimental

results on a real cluster and the experimental results on

Amazon EC2, respectively.

A. Experimental Results on Real Cluster
We deployed our testbed in a large-scale cluster [34],

and implemented our method and other four methods in our

testbed. We compared the results of our method and the other

four methods Amoeba [17], Natjam [18], SRPT [35] and

SNB [36] in various scenarios. We used up to 1,000 hetero-

geneous jobs which have different resource requirements, and

we requested 4 schedulers, 6 masters and 50 workers. We

used the Google cluster trace data [37] to set the parameters.

The Google cluster trace [37] records resource usage on a

cluster of about 11,000 machines from May 2011 for 29 days.

We randomly chose tasks from the jobs in the period between

May 1 to May 7. Table I shows the parameter settings in our

experiments unless otherwise specified. First, we submitted

jobs at a fixed rate and collected the results, then we varied

the job submission rate and conducted the experiments again

to test the effects of job submission rate on schedulers.

Figure 4(a) shows the relationship between the makespan

and the number of jobs. In Figure 4(a), we see that the

makespan increases as the number of jobs increases. This

is because with a fixed number of workers, the more the

jobs submitted, the more time the workers require to finish

executing all the jobs. Moreover, we also observe that Falcon

has the smallest makespan, and the makespans of Natjam,

Amoeba and Falcon follow Falcon<Natjam<Amoeba. The

TABLE I: Parameter settings.

Parameter Meaning Setting
n # of servers 10-50
h # of jobs 50-1000
nt # of tasks of a job 10-20
δ Minimum required ratio 0.35
ω1 Weight for task’s remaining time 0.5
ω2 Weight for task’s waiting time 0.5

0.5
1

1.5
2

2.5
3

3.5
4

50 100 150 200 250

M
ak

es
pa

n
(s

ec
on

ds
)

Number of jobs

������ Natjam �	�
��

(a) Makespan for various methods
with 10 workers

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

50 100 150 200 250

M
ak

es
pa

n
(s

ec
on

ds
)

Number of jobs

������ Natjam �	�
��

(b) Makespan for various methods
with 50 workers

Fig. 4: Performance of various methods on makespan.

reason behind this is that Falcon takes into account task

dependency and assigns tasks that are independent of each

other to different workers (or different cores of a worker) so

that the tasks can run in parallel, and thus reduces the response

time of jobs and decreases the makespan. Also, Falcon uses

the SP method to reduce the time overhead caused by pre-

emption. However, both Natjam and Amoeba assign tasks to

workers without the consideration of task dependency, which

can increase time overhead. Although Natjam has deadline

constraints for jobs, it neglects the task dependency, and it

thus leads to time overhead caused by communication between

different tasks. Figure 4(b) shows the relationship between the

makespan and the number of jobs with 50 workers. In Figure

4(b), we observe the similar results due to the same reasons.

Figure 5 compares the performance of various evaluation

metrics of Falcon with Amoeba, Natjam, SNB and SRPT

with job submission rate 5 jobs per second. Figure 5(a)

shows the relationship between overhead and the number of

tasks. In Figure 5(a), we use the number of preemptions to

represent the overhead because the overhead is mainly caused

by preemption (e.g., context switch). We see that SNB has

the highest overhead. As the number of tasks increases, the

overhead of SNB increases. The overhead of Falcon in general

is the lowest. This is because Falcon considers the rank of

the waiting task’s priority among all the waiting tasks in the

queue and it allows preemptions for at most top �(1 − δ)k�
priority tasks. Figure 5(b) shows the relationship between the

number of disorders for executing tasks that should have been

executed sequentially due to the dependencies among them

and the number of tasks. In Figure 5(b), we find the number

of disorders follows Falcon<Natjam<Amoeba<SRPT<SNB.

The reason behind this is that Falcon considers the de-

pendencies among tasks when it schedules tasks, however,

the other methods neglect the dependencies among tasks

when they schedule tasks. Figure 5(c) shows the relation-

ship between throughput (# of tasks/ms) and the number

of tasks. In Figure 5(c), we see the throughput follows

SNB<SRPT<Amoeba≈Natjam<Falcon. This is because (1)

Falcon considers task dependency and schedules tasks that

do not depend on each other to different processors or dif-

ferent machines to run tasks in parallel so that it decreases

0

500

1000

1500

2000

200 400 600 800 1000

N
um

be
r o

f p
re

em
pt

io
ns

Number of tasks

������ �	�
�� Natjam
SNB SR�T

(a) Relationship between overhead and
the number of tasks

0
100
200
300
400
500
600
700

200 400 600 800 1000

Nu
m

be
r o

f d
iso

rd
er

s

Number of tasks

������ �	�
�� Natjam
SNB SR�T

(b) Relationship between the number
of disorders and the number of tasks

0.25

0.75

1.25

1.75

2.25

2.75

3.25

200 400 600 800 1000

Th
ro

ug
hp

ut
 (#

 o
f t

as
ks

/m
s)

Number of tasks

Falcon Amoeba Natjam SNB SRPTRPT

(c) Relationship between throughput
and the number of tasks

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

CPU MEM Storage

Av
e.

 re
so

ur
ce

 u
til

iza
tio

n

Resource types

Falcon Natjam Amoeba
SRPT SNB

(d) Relationship between resource uti-
lization and the number of tasks

Fig. 5: Performance of various evaluation metrics of different methods with job submission rate 5 jobs/sec and 30 workers on a real cluster.

0

500

1000

1500

2000

200 400 600 800 1000

N
um

be
r o

f p
re

em
pt

io
ns

Number of tasks

������ �	�
�� Natjam
SNB SR�T

(a) Relationship between overhead and
the number of tasks

0
200
400
600
800

1000
1200
1400
1600

200 400 600 800 1000

Nu
m

be
r o

f d
iso

rd
er

s

Number of tasks

������ �	�
�� Natjam
SNB SR�T

(b) Relationship between the number
of disorders and the number of tasks

0.25

0.75

1.25

1.75

2.25

2.75

3.25

200 400 600 800 1000

Th
ro

ug
hp

ut
 (#

 o
f t

as
ks

/m
s)

Number of tasks

������ �	�
�� Natjam SNB SR�T

(c) Relationship between throughput
and the number of tasks

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

CPU MEM Storage

Av
e.

 re
so

ur
ce

 u
til

iza
tio

n

Resource types

Falcon Natjam Amoeba
SRPT SNB

(d) Relationship between resource uti-
lization and the number of tasks

Fig. 6: Performance of various evaluation metrics of different methods with job submission rate 50 jobs/sec and 30 workers on a real cluster.

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

50 100 150 200 250

M
ak

es
pa

n
(se

co
nd

s)

Number of jobs

������ Natjam �	�
��

(a) Makespan for various methods
with 20 workers

0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9

50 100 150 200 250

M
ak

es
pa

n
(s

ec
on

ds
)

Number of jobs

������ Natjam �	�
��

(b) Makespan for various methods
with 30 workers

Fig. 7: Makespan for various methods with 30 workers with job submission
rate 5 jobs/sec on Amazon EC2.

response time and thus increases throughput; (2) Falcon uses

the SP method for preemption, and it allows preemptions

for at most top �(1 − δ)k� priority tasks, which reduces the

time overhead caused by preemption and thereby increases

the throughput. Figure 5(d) shows the relationship between

the average resource utilization and the number of tasks. In

Figure 5(d), we see that the average resource utilization in

general follows SNB<Amoeba≈SRPT<Natjam<Falcon. This

is because Falcon packs complementary tasks and allocates

them to workers, which can improve the resource utilization.

Figure 6 compares the performance of various evaluation

metrics of Falcon with Amoeba, Natjam, SNB and SRPT

with job submission rate 50 jobs per second. In Figure 6,

we observe the similar results due to the same reasons. Both

Figure 5 and Figure 6 suggest Falcon in general outperforms

the other four methods.

B. Real-world Experimental Results
To fully test the performance of our method, we also

conducted experiments on Amazon EC2. We used the similar

heterogeneous jobs, 3 schedulers, 5 masters and 6 workers for

each master. Each worker consists of 12GB memory and six

2.5 GHz processors. We deployed the implementation of our

method and the other methods to the workers. We collected

all results and calculated the average values of each metric.

Figure 7(a) and Figure 7(b) show the relationship between

the makespan and the number of jobs with 20 workers and

30 workers on Amazon EC2, respectively. In Figure 7(a) and

Figure 7(b), we observe the similar results due to the same

reasons. By examining Figure 7 and Figure 4, we see that the

makespan in Figure 7(a) is relatively lower than that in Figure

4(a), and the makespan in Figure 4(b) is relatively lower than

that in Figure 7(b). This is because there are more workers in

Figure 7(a) and Figure 4(b).

Figure 8 compares the performance of various evaluation

metrics of Falcon with Amoeba, Natjam, SNB and SRPT with

job submission rate 5 jobs per second on Amazon EC2. The

results in general are consistent with our testbed results. By

examining Figure 5, Figure 6 and Figure 8, we find both our

testbed results and real-world experimental results on EC2

show our method in general performs better than the other

four methods.

Figure 9 compares the performance of various evaluation

metrics of Falcon with Amoeba, Natjam, SNB and SRPT

with job submission rate 50 jobs per second on Amazon

EC2. The results in Figure 9 in general are consistent with

our testbed results.

VI. CONCLUSIONS

This paper presents Falcon, an efficient dependency-aware

scheduling for high throughput and resource utilization as well

as low overhead in clouds. Falcon considers task dependency

and reduces the response time of jobs by running tasks that

are independent of each other in parallel. To satisfy the

high priority tasks without incurring much overhead, Falcon

presents Selective Preemption which can reduce the waiting

time of high priority task and the time overhead caused by pre-

emption. Moreover, Falcon assigns tasks to workers with the

consideration of improving resource utilization. We compare

our method with the existing methods under various scenarios

using a large real cluster and Amazon EC2 cloud service, and

demonstrate Falcon outperforms the exiting methods under

both the real cluster and Amazon EC2 cloud service. In the

future, we will use different cloud/cluster workloads (including

machine learning workloads or GPU-based workloads) to fully

verify the performance of Falcon. Also, we will consider

data locality, fairness, tail latency, and resource harvesting. In

addition, we will consider fault tolerance and energy efficiency

in designing a robust and efficient scheduling system.

0

500

1000

1500

200 400 600 800 1000

N
um

be
r o

f p
re

em
pt

io
ns

Number of tasks

������ �	�
�� Natjam
SNB SR�T

(a) Relationship between overhead and
the number of tasks

0

100

200

300

400

500

600

700

200 400 600 800 1000

Nu
m

be
r o

f d
iso

rd
er

s

Number of tasks

������ �	�
�� Natjam
SNB SR�T

(b) Relationship between the number
of disorders and the number of tasks

0.25

0.75

1.25

1.75

2.25

2.75

3.25

200 400 600 800 1000

Th
ro

ug
hp

ut
 (#

 o
f t

as
ks

/m
s)

Number of tasks

������ �	�
�� Natjam SNB SR�T

(c) Relationship between throughput
and the number of tasks

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

CPU MEM Storage

Av
e.

 re
so

ur
ce

 u
til

iza
tio

n

Resource types

Falcon Natjam Amoeba
SRPT SNB

(d) Relationship between resource uti-
lization and the number of tasks

Fig. 8: Performance of various evaluation metrics of different methods with job submission rate 5 jobs/sec and 30 workers on Amazon EC2.

0

500

1000

1500

2000

200 400 600 800 1000

N
um

be
r o

f p
re

em
pt

io
ns

Number of tasks

������ �	�
�� Natjam
SNB SR�T

(a) Relationship between overhead and
the number of tasks

0

200

400

600

800

1000

1200

1400

200 400 600 800 1000

Nu
m

be
r o

f d
iso

rd
er

s

Number of tasks

������ �	�
�� Natjam
SNB SR�T

(b) Relationship between the number
of disorders and the number of tasks

0

1

2

3

4

200 400 600 800 1000

Th
ro

ug
hp

ut
 (#

 o
f t

as
ks

/m
s)

Number of tasks

������ �	�
�� Natjam SNB SR�T

(c) Relationship between throughput
and the number of tasks

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

CPU MEM Storage

Av
e.

 re
so

ur
ce

 u
til

iza
tio

n

Resource types

Falcon Natjam Amoeba
SRPT SNB

(d) Relationship between resource uti-
lization and the number of tasks

Fig. 9: Performance of various evaluation metrics of different methods with job submission rate 50 jobs/sec and 30 workers on Amazon EC2.

ACKNOWLEDGMENT

This research was supported in part by U.S. NSF grant

NSF-2400459 and the generous funding from the Cyber Policy

Institute at Florida A&M University. We would like to thank

Mr. Sunday J. Awine, Kalab M. Kiros, Javonte L. Carter, and

Ms. Lam Phuong Nguyen for their help on this work.

REFERENCES

[1] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch.
Heterogeneity and dynamicity of clouds at scale: Google trace analysis.
In Proc. of SoCC, San Jose, 2012.

[2] Z. Wang, H. Li, Z. Li, X. Sun, J. Rao, H. Che, and H. Jiang. Pigeon:
an effective distributed, hierarchical datacenter job scheduler. In Proc.
of ACM SoCC, Santa Cruz, 2019.

[3] T. Jin, Z. Cai, B. Li, C. Zheng, G. Jiang, and J. Cheng. Improving
resource utilization by timely fine-grained scheduling. In EuroSys, 2020.

[4] B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Rifaat, and C. R. Das.
Modeling and synthesizing task placement constraints in google compute
clusters. In Proc. of SoCC, 2011.

[5] P. Delgado, D. Didona, F. Dinu, and W. Zwaenepoel. Kairos: Preemptive
data center scheduling without runtime estimates. In SoCC, 2018.

[6] P. Delgado, D. Didona, F. Dinu, and W. Zwaenepoel. Job-aware
scheduling in eagle: Divide and stick to your probes. In SoCC, 2016.

[7] J. Rasley, K. Karanasosy, S. Kandulay, R. Fonseca, M. Vojnovic, and
S. Rao. Efficient queue management for cluster scheduling. In EuroSys,
2016.

[8] Q. Weng, W. Xiao, Y. Yu, W. Wang, C. Wang, J. He, Y. Li, L. Zhang,
W. Lin, and Y. Ding. Mlaas in the wild: Workload analysis and
scheduling in large-scale heterogeneous gpu clusters. In NSDI, 2022.

[9] J. Liu, Y. Lao, Y. Mao, and R. Buyya. Sailfish: A dependency-aware
and resource efficient scheduling for low latency in clouds. In Proc. of
IEEE Big Data, 2023.

[10] M. Hosseini, M. Salehi, and R. Gottumukkala. Enabling interactive
video streaming for public safety monitoring through batch scheduling.
In Proc. of HPCC/SmartCity/DSS, 2017.

[11] R. Damaševičius, N. Bacanin, and S. Misra. From sensors to safety:
Internet of emergency services (ioes) for emergency response and
disaster management. J. Sens. Actuator Netw., 12(3):41, 2023.

[12] M. Zaharia, A. Konwinski, A. Joseph, R. Katz, and I. Stoica. Improving
mapreduce performance in heterogeneous environments. In OSDI, 2008.

[13] M. Harchol-Balter. Task assignment with unknown duration. In Proc.
of ICDCS, 2000.

[14] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. Sparrow:
Distributed, low latency scheduling. In Proc. of SOSP, 2013.

[15] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella.
Multi-resource packing for cluster schedulers. In SIGCOMM, 2014.

[16] A. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca. Jockey:
Guaranteed job latency in data parallel clusters. In EuroSys, 2012.

[17] G. Ananthanarayanan, C. Douglas, R. Ramakrishnan, S. Rao, and
I. Stoica. True elasticity in multi-tenant data-intensive compute clusters.
In Proc. of SoCC, 2012.

[18] B. Cho, M. Rahman, T. Chajed, I. Gupta, C. Abad, N. Roberts, and
P. Lin. Natjam: Design and evaluation of eviction policies for supporting
priorities and deadlines in mapreduce clusters. In Proc. of SoCC, 2013.

[19] A. Qiao, S. K. Choe, J. S. Subramanya, W. Neiswanger, Q. Ho,
H. Zhang, G. R. Ganger, and E. P. Xing. Pollux: Co-adaptive cluster
scheduling for goodput-optimized deep learning. In Proc. of OSDI, 2021.

[20] J. Gu, M. Chowdhury, K. Shin, Y. Zhu, M. Jeon, J. Qian, H. Liu, and
C. Guo. Tiresias: A gpu cluster manager for distributed deep learning.
In Proc. of NSDI, 2019.

[21] E. Amaro, C. Branner-Augmon, Z. Luo, A. Ousterhout, M. K. Aguilera,
A. Panda, S. Ratnasamy, and S. Shenker. Can far memory improve job
throughput? In Proc. of EuroSys, 2020.

[22] S. Vijayakumar, A. Madhavapeddy, and E. Kalyvianaki. Scheduling for
reduced tail task latencies in highly utilized datacenters. In SoCC, 2024.

[23] W. Xiang, Y. Li, Y. Ren, F. Jiang, C. Xin, V. Gupta, C. Xiang, X. Song,
M. Liu, B. Li, K. Shao, C. Xu, W. Shao, Y. Fu, W. Wang, C. Xu,
W. Xu, C. Lin, R. Shi, and Y. Liang. GÖDEL: Unified large-scale
resource management and scheduling at bytedance. In SoCC, 2023.

[24] T. T. Chang and S. Venkataraman. Eva: Cost-efficient cloud-based
cluster scheduling. In Proc. of EuroSys, Rotterdam, 2025.

[25] E. Guo, W. Jia, X. Ding, and J. Shan. Optimizing task scheduling in
cloud vms with accurate vcpu abstraction. In Proc. of EuroSys, 2025.

[26] Z.-H. Zhan, X.-F. Liu, Y.-J. Gong, J. Zhang, H. S. Chung, and Y. Li.
Cloud computing resource scheduling and a survey of its evolutionary
approaches. ACM Comput. Surv., 47(4):1–33, 2015.

[27] B. Wu, K. Qian, B. Li, Y. Ma, Q. Zhang, Z. Jiang, J. Zhao, D. Cai,
E. Zhai, X. Liu, and X. Jin. Xron: A hybrid elastic cloud overlay
network for video conferencing at planetary scale. In SIGCOMM, 2023.

[28] J. Liu, H. Shen, and L. Chen. CORP: Cooperative opportunistic resource
provisioning for short-lived jobs in cloud systems. In Proc. of IEEE
CLUSTER, 2016.

[29] P. Delgado, F. Dinu, A. Kermarrec, and W. Zwaenepoel. Hawk: Hybrid
datacenter scheduling. In Proc. of ATC, 2015.

[30] Q. Weng, L. Yang, Y. Yu, W. Wang, X. Tang, G. Yang, and L. Zhang.
Beware of fragmentation: Scheduling gpu-sharing workloads with frag-
mentation gradient descent. In NSDI, 2023.

[31] L. Chen and H. Shen. Considering resource demand misalignments
to reduce resource over-provisioning in cloud datacenters. In Proc. of
INFOCOM, 2017.

[32] O. Hadary, L. Marshall, I. Menache, A. Pan, E. E. Greeff, D. Dion,
S. Dorminey, S. Joshi, Y. Chen, M. Russinovich, and T. Moscibroda.
Protean: Vm allocation service at scale. In Proc. of OSDI, 2020.

[33] Amazon ec2. http://aws.amazon.com/ec2 [accessed in May 2025].
[34] Palmetto cluster. https://docs.rcd.clemson.edu/palmetto/about/ [accessed

in Mar. 2025].
[35] A. Balasubramanian, A. Sussman, and N. Sadeh. Decentralized pre-

emptive scheduling across heterogeneous multi-core grid resources. In
JSSPP, 2013.

[36] M. Harchol-Balter, B. Schroeder, N. Bansal, and M. Agrawal. Size-based
scheduling to improve web performance. ACM Trans. on Computer
Systems, 21(2):207–233, 2003.

[37] Google trace. https://code.google.com/p/googleclusterdata/ [accessed in
May 2025].

